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Veveř́ı 95, 602 00 Brno, Czech Republic
vala.j@fce.vutbr.cz

Abstract

The mathematical analysis of a heat equation and its solutions is a standard part
of most textbook of applied mathematics and computational mechanics. However,
serious problems from engineering practice do not respect formal simplifications of
such analysis, namely at high temperatures, for phase-change materials, etc. This
paper, motivated by the material design and testing of a high-temperature thermal
accumulator, as a substantial part of the Czech-Swedish project of an original equip-
ment for exploiting solar energy using optical fibres, demonstrates the possibility of
both direct and inverse analysis, physically transparent and mathematically correct,
paying attention to the set of basic temperature-variable characteristics of thermal
transfer.

1. Introduction

Most textbooks, both from applied mathematics and computational mechanics,
present a heat transfer equation as a slightly modified Poisson equation, supplied
by standard Dirichlet or Neumann boundary conditions, with a few constant ma-
terial characteristics. Consequently, some general analytic results, as [2], p. 184, or
at least semi-analytic ones, making use of the Fourier method by [2], p. 219, can be
derived. Applying the variational approach, the existence and uniqueness of solution
of a linear equation can be verified using the Lax-Milgram theorem together with
some basic facts from the variational calculus; moreover, for the convergence of se-
quences of approximate solutions, the proper error analysis both for space and time
discretization, applying various approaches by [17], is available. However, it is not
easy to find such ideal closed simple systems in the nature. All engineering appli-
cations, especially in the design of advanced materials, structures and technologies
(where sufficiently long experience with their behaviour is missing) work with materi-
als of complicated micro-structure, including potential phase changes. Their effective
material characteristics cannot be evaluated in a simple way and may not exist at
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all in any reasonable sense, at least in that using some standard (e.g. two-scale)
periodic homogenization, as discussed in [5], p. 204, or its generalization (including
non-periodic phenomena and stochastic analysis) by [8]. Even in the homogeneous
and isotropic case, at least from the macroscopic point of view, the determination of
material parameters, making use of incomplete data from available experiments, can
generate non-trivial inverse problems, not covered by [11], p. 255. To compensate
the usual lack of input data, the formulation of such identification problems should
avoid all multi-physical considerations, as the hygro-thermo-chemo-mechanical ones
in [21] (and in a lot of papers referenced there), based on the complete set of con-
servation laws of continuum thermomechanics by [3], p. 4, i. e. for mass, (linear and
angular) momentum and energy (or enthalpy), related to particular material compo-
nents, including their phase changes. Even in the case of reflective insulation layers
with air gaps or layers, reviewed in [12] and [9], most authors try to avoid (as much
as possible) any methods of computational fluid dynamics, to obtain some simpli-
fied formulae for energy conservation only. However, the need of knowledge of results
from various research areas justifies the extensive list of references even in this paper.

Figure 1: Experiments with the exploitations of solar energy (Hudiksvall, Sweden).

The principal motivation for the deeper analysis of heat transfer phenomena,
sketched in this paper, comes from the Czech-Swedish project of the advanced ex-
ploitation of solar energy using optical fibres (cf. Acknowledgements). The left-hand
part of Fig. 1 illustrates the development of the needed technological equipment,
whereas its right-hand part shows one model (a representative from several alterna-
tives) of the heat accumulator, whose effective functionality at high temperatures
(up to 1000 ◦C) is a crucial part of the whole system; more information (without
technical details) can be found in [18]. Fig. 2 shows a hot-wire measurement for the
identification of material characteristics under standard laboratory conditions at the
Faculty of Civil Engineering of Brno University of Technology. This method is open
to its upgrade to high temperatures (more expensive components for a measurement
device are necessary); another active cooperation exists with PD-Refractories CZ
(former Moravian Fire and Schistous Clay Works) in Velké Opatovice. Nevertheless,
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Figure 2: A simple equipment for the non-stationary hot-wire measurements (Brno
University of Technology, Czech Republic).

the computational approach of [1], related to this method (much better than valid
European technical standards), based on the simplifying physical and geometrical as-
sumptions and on the properties of Bessel functions, needs substantial improvements
just in the case of high temperatures.

To demonstrate a (nearly) realistic computational problem without complicated
notations and technical difficulties, we shall consider, apart from its material micro-
structure, a homogeneous and isotropic material, whose thermal behaviour can be
studied using the energy balance in the solid phase by [3], p. 7, without any changes
in geometrical configuration, in the 3-dimensional Euclidean space R3 and at the
time interval I = 〈0, τ〉 for some positive τ . Usually such material is surrounded
by other layers from the measurement system, whose properties should be a priori
known, as explained in [20]; here we shall consider only a separate material specimen,
located in some open set Ω in R3, with all boundary conditions prescribed on the
boundary ∂Ω of Ω in R3. The heat conduction in the specimen will be conditioned by
the heat convection and radiation from its environment. We shall study i) how the
temperature-dependent material characteristics can be inserted both to the direct
calculations of the time development of unknown temperature fields for a priori
known values of such characteristics, solving standard initial and boundary value
problems, ii) how these characteristics can be evaluated in the case of overdetermined
boundary conditions.

2. Direct problems

Let us consider some system of Cartesian coordinates x = (x1, x2, x3) in R3 and
the time variable t ∈ I; upper dot symbols will be reserved for the derivatives with
respect to t, prime symbols for the ordinary derivatives of functions of one real
variable, ∇ for (∂/∂x1, ∂/∂x2, ∂/∂x3) and · for scalar products of vectors from R3.
The most frequently used heat transfer equation in the literature is

c(θ)θ̇ −∇ · (κ(θ)∇θ) + f = 0 on Ω× I, (1)

where θ(x, t) [K] is the unknown temperature, κ(θ) [W/(m·K)] the heat conductivity
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(crucial for the thermal insulation ability of a material) c(θ) [J/m3·K] the heat ca-
pacity (important for the thermal accumulation property) and f [W/m3] the volume
heat source. The thermal diffusivity α(θ) := κ(θ)/c(θ) [m2/s] occurs frequently, too.

The obvious initial condition is

θ(., 0) = θ0 on Ω ; (2)

θ0 has to be prescribed. The boundary ∂Ω is supposed to contain a set Γ, where (in
general nonlinear) boundary conditions of the type

κ(θ)∇θ · ν + ϕ(θ, θe)(|θ|n−1θ − θne ) + g = 0 on Γ× I (3)

are satisfied; here g [W/m2] is the surface heat source, ν := (ν1, ν2, ν3) denotes the
unit normal vector to Γ (with the outside orientation), θe means the temperature
of the environment and ϕ(θ, θe) [W/(m2·Kn)]refers to some boundary characteristic,
related to a real n ≥ 1 (mostly integer in technical applications), namely to that for
interface convection by [6], p. 37, with n = 1, or that for interface radiation by [6],
p. 116, with n = 4, well-known as the Stefan-Boltzmann law; the natural and simple
generalization is to combine a finite number of additive terms of such type on the
left-hand side of (3). Here we can see that even in the case of constant c we cannot
substitute, like (1), κ by α totally, because it cannot be removed from (3) except the
case of (practically) empty Γ. We shall also assume that

θ = θe on Θ× I, (4)

where Θ is some part of the boundary ∂Ω; in this section we shall consider disjoint Θ
and Γ, whose closure covers the whole boundary ∂Ω.

Nevertheless, following [3], p. 8, for the energy balance the most important quan-
tity is the internal energy ε(x, t) [W/kg]; thus we have

(ρ(ε)ε)̇−∇ · (σ(ε)∇ε) + f = 0 on Ω× I, (5)

where ρ(ε) is the material density [kg/m3] and σ(ε) [kg/m] is the new material
characteristic, expected to be replaced using κ(θ) from (3); from the point of view of
practical measurements the values of θ can be obtained much easier than those of ε.
Frequently ρ(ε)ε̇ occurs instead of the first additive term in (5), referring to the mass
conservation; however, some applications, e. g. [16], studying the early-age behaviour
of concrete mixtures, require variable ρ due to the change of material structure, thus
we are only allowed to define ρ(ε) := ρ(ε) +ρ′(ε)ε and write ρ(ε)ε̇ instead of the first
additive term in (5). Dividing (5) by ρ(ε), assumed to be non-zero, we receive

ε̇−∇ · (a(ε)∇ε) + b(ε)∇ε · ∇ε+ f(ε) = 0 on Ω× I, (6)

with a(ε) := σ(ε)/ρ(ε) [m2], b(ε) := −σ(ε)ρ′(ε)/ρ2(ε) [m2] and f(ε) := f/ρ(ε)
[W/kg].

Let us now introduce the following simplified notation: let ψ̂(.) be an arbitrary
real function with its derivative identical with some given real function ψ(.) (defined
up to an additive constant). Using such notation, we are able to set ε = ĉm(θ),
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where cm(θ) [J/(kg·K)] denotes the heat capacity related to the unit mass (unlike
c related to the unit volume); consequently θ = ĉ−1

m (ε). Thus we obtain σ(ε)∇ε =
σ(ĉm(θ))∇(ĉm(θ)) = σ(ĉm(θ))cm(θ)∇θ = κ(θ)∇θ, which implies σ(ε) = κ(θ)/ρ(ε).
Similarly (ρ(ε)ε)̇ = ρ(ε)ε̇ = ρ(ε)cm(θ)θ̇ = c(θ)θ̇ gives c(θ) = ρ(ε)cm(θ). Conse-
quently we are able to evaluate the thermal diffusivity from the (not very simple)
formula α(θ) = κ(θ)/(cm(θ)ρ(ĉm(θ))). Another important information is that for
positive values of κ and ρ and negative values of ρ′ (which is the physically realistic
setting) both factors a and b in (6) remain positive.

The initial and boundary conditions, as a simple analogy to (2), (3), and (4), are

ε(., 0) = ε(θ0) on Ω , (7)

σ(ε)∇ε · ν + ϕ(c−1
m (ε), θe)(|c−1

m (ε)|n−1c−1
m (ε)− θne ) + g = 0 on Γ× I , (8)

ε(θ) = ε(θe) on Θ× I . (9)

To find the solution, i. e. the space- and time- variable temperature field ε (and
consequently to express θ, too), of (6) with the initial conditions (7) and the boundary
conditions (8) and (9) in a reasonable sense, admitting its numerical analysis, in some
appropriate space of mappings from I to Lebesgue and Sobolev spaces defined on Ω
and ∂Ω is not easy because of the presence of various type of nonlinearities in (5)
and (9). Some interesting ideas and partial existence and uniqueness results can
be found in [14], referring to the former analysis of [7]. However, the set of formal
simplifying assumptions hidden there does not enable to handle realistic engineering
problems, as needed in this paper.

Seemingly it could be useful to formulate a similar problem to the just discussed
one for θ directly, without any transformation using ε. Indeed, dividing (1) by c(θ)
(whose values are positive usually), we receive

θ̇ −∇ · (a∗(θ)(κ(θ)∇θ)) + b∗(θ)∇ · ∇θ + f∗(θ) = 0 on Ω× I (10)

with a∗(θ) := κ(θ)/c(θ), b∗(θ) := −κ(θ)c′(θ)/c2(θ), and f∗(θ) := f/c(θ), thus we
should find the solution of (10) with the boundary conditions (3) and (4) and the
initial condition (2). The arguments on the positive values of a∗ and b∗ (instead of
those related to a and b) can be repeated, but at least (10) is even more complicated
than (6) and difficulties similar to those in [14] can be expected.

Some difficulties of the above mentioned type can be removed using the Kirchhoff
transformation u = ĉ(θ) [W/m3], seemingly the slight modification of the discussed
ε = ĉm(θ); consequently θ = c−1(u). Now we have u̇ = ρ(ε)ε̇ and, introducing
β(u) := κ̂(c−1(u)), also ∇β(u) = β′(u)∇u. Then (1) can be converted to the form

u̇−∇ · ∇β(u) + f = 0 on Ω× I (11)

and supplied by the initial and boundary conditions

u(., 0) = u0 on Ω, (12)

∇β(u) · ν + ψe(u)(|γ(u)|n−1γ(u)− θne ) + g = 0 on Γ× I , (13)

u = ue on Θ× I, (14)

with u0 := u(θ0), ue := u(θe), γ(u) := κ̂−1(u) and ψe(u) := ϕ(κ−1(u), θe).
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For the sake of simplicity, let us now assume that Ω is a domain in R3 with
a sufficiently smooth boundary to satisfy theorems on the Sobolev and Lebesgue
spaces introduced on Ω and ∂Ω, namely the Sobolev (compact) imbedding, the
Poincaré-Friedrichs and the trace theorems by [15], p. 17; much more general geomet-
rical configurations (bringing unpleasant technical difficulties) are discussed in [13],
pp. 62, 222, and 385. Moreoever, let β′, γ and ψe be continuous real functions and Θ
be an empty set (this last assumption will be removed soon). One can see that, even
for n = 1 in (13), the classical theory of monotone operators by [10], p. 243, is not
applicable, because the monotonicity is violated for any non-constant β′ or γ, thus
more general results on pseudomonotone or weakly continuous operators are needed.
Applying the standard notation of Sobolev, Lebesgue and Bochner spaces, let us
choose V = W 1,2(Ω) with its dual space V ∗ and consider u0 ∈ V , f ∈ L2(I, L6/5(Ω))
and g, θne ∈ L2(I, L4/3(Γ)). In all following considerations, δ will be some posi-
tive constant (a priori known, small in practice). Let us suppose that β′(r) ≥ δ,
1/δ ≥ γ(r) ≥ δ and 1/δ ≥ ψe(r) ≥ δ for any r ∈ R. Then by [15], p. 237 (after
rather long verification of abstract assumptions), thanks to the properties of quasi-
linear pseudomonotone mappings, the problem formulated by (11), (12) and (13) has
a weak solution u ∈ W 1,2,2(I, V, V ∗) in the sense

u̇(t)v(t) +
∫

Ω
β′(u(x, t))∇u(x, t) · ∇v(x) dx

+
∫

Γ
ψe(u(x, t))(|γ(u(x, t))|n−1γ(u(x, t))− θne (x, t))v(x) ds(x) (15)

=
∫

Ω
f(x, t)v(x) dx−

∫
Ω
g(x, t)v(x) ds(x)

for all v ∈ V and almost every t ∈ I

if β′(r) ≤ 1/δ for any r ∈ R and n = 1. Moreover, by [15], p. 241, thanks to the
properties of quasilinear weakly continuous mappings, the same problem has a very
weak solution u ∈ L2(I, V ) in the sense∫

Ω
(u(x, τ)v(x, τ)− u0(x)v(x, 0)) dx

+
∫
I

∫
Ω
β′(u(x, t))∇(u(x, t)) · ∇(v(x, t)) dx dt

+
∫
I

∫
Γ
ψe(u(x, t))(|γ(u(x, t))|n−1γ(u(x, t))− θne (x, t))v(x, t) ds(x) dt (16)

=
∫
I

∫
Ω
f(x, t)v(x, t) dx dt−

∫
I

∫
Ω
g(x, t)v(x, t) ds(x) dt

for all v ∈ W 1,∞,∞(I,W 1,∞(Ω), L6/5(Ω))

if β′(r) ≤ (1 + |r|5/3−δ)/δ for any r ∈ R and n ≤ 2.
We can see that the very weak solution, unlike the weak one, admits e. g. the

linear growth of β′(r), which is useful in practice. However, the requirement n ≤ 2 is
not realistic, namely in the analysis of radiation effects. The remedy is to choose V
as the space of all v from W 1,2(Ω), whose traces belong to Ln(Γ); the properties
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of such spaces are discussed in [15], pp. 64 and 253. Another needed generalization
is to remove the assumption Γ = ∂Ω. This can be done using the transformation
ũ = u − u∗, where some u∗ from the same space, as required for u, satisfies (14)
instead of u. Consequently we have only ũ(., 0) = u0 − u∗(., 0) on Ω instead of (12),
in addition to (11) and (13) in their slightly modified forms containing ũ; then it is
sufficient to take the subspace of all functions from V with zero values on Θ instead
of V . However, the practical construction of u∗ may not be easy.

Since the derivation of solutions (15) and (16) is based on the Rothe sequences
and Galerkin approximations, the numerical construction of sequences of approx-
imate solutions is available, although the verification of their convergence is not
trivial because of the presence of non-linear terms in (15) and (16). However, in any
algorithm of discretization in time, based on the Euler implicit, Crank-Nicholson
or similar schemes, it is natural to take arguments of β′(.), γ(.), ψe(.) and |.| from
the preceding time step, thus we obtain only linear systems; the proper conver-
gence analysis then relies on various compactness theorems. Let us also notice that
some our assumptions can be weakened, e. g. it is possible to work with arbitrary
f ∈ L1(Ω× I); however, the derivation of relevant results, using accretive mappings
and nonlinear semigroups, by [15], p. 291, does not seem friendly to the construction
of simple computational algorithms.

3. Inverse problems

Due to the limited extent of this paper, we shall refer to the notations and
considerations of the previous section as much as possible. The first step in the
inverse analysis then admits the intersection Γ ∪ Θ with non-zero measure on ∂Ω,
compensating the imperfect knowledge of β′, γ and ψe. It is then useful to introduce
Ξ := Θ \ Γ and Ψ := Γ \Θ (in direct problems clearly Ξ = Θ and Ψ = Γ). Let P be
a set of admissible parameters; its simplest choice can be a closed set in RN with an
integer number N of unknown parameters. Now we can consider β′(r, p), γ(r, p) and
ψe(r, p) as functions of (r, p) ∈ R × P , instead as functions defined on R only. We
shall suppose that all these functions satisfy assumptions of (15) or (16), taking into
account their above sketched generalizations, too, for arbitrary p ∈ P .

Following [4], pp. 123 and 368, it is natural to define

F (p) =
∫
I

∫
Ξ
|u(x, t, p)− ue(x, t)|ω ds(x) dt, (17)

where 1≤ω≤∞ (the well-known choice is the classical least-squares one, i. e. ω=2);
Θ× I in (14) must be reduced to Ξ× I in all direct problems (with fixed p). Mini-
mizing F , which can be interpreted as an error in our overdetermined problem where
u(., ., p) ≈ ue(., .) on Ξ × I, is required in some reasonable sense (the equality here
is not realistic because of the inexact measurements of ue and other input data, our
physical and geometrical simplifying assumptions, disturbing effects from other phys-
ical processes, etc.). Let us notice that F is only a function of N real variables here,
with respect to p. The setting of p enables us to identify all material characteristics
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completely (although the corresponding algebraic manipulations may not be quite
easy).

Another access is seemingly available, too: to define

G(p) =
∫
I

∫
Ξ
|∇β(u(x, t, p) · ν(x) + ψe(u(x, t, p))(|γ(u(x, t, p))|n−1γ(u(x, t, p))

− θne (x, t)) + g(x, t)|ω ds(x) dt (18)

similarly to (17); Γ × I in (13) must be reduced to Ψ × I in all direct problems.
Minimizing G, also interpretable as an error of the (exactly zero) term |.| in (18),
analogous to that of F , but formulated (from the physical point of view) for the
interface heat fluxes instead of the interface temperature, is possible, but rarely
used in practice because i) the evaluation of G (and its derivatives) in (18) is much
more difficult that that of F in (17) and ii) the reliability of recorded values of g is
usually much lower than that of θe in most engineering applications, including that
mentioned in Introduction.

Let us pay attention to (17) only. Let us assume that P is a closed bounded set
in RN , thus (because N is finite) it must be compact. To verify the existence of some
minimum of (17), by [10], p. 191, it is then sufficient to prove its continuity. However,
it is not quite simple, even in the case (15) and ω = 2, although it seems to be easy
i) to consider a sequence of pk ∈ P with k ∈ {1, 2, . . .} with the limit p ∈ P , ii) to
derive a corresponding uk(., ., pk) by (15) to pk, as well as u(., ., p) to p, iii) to insert
v(.) = uk(., ., pk)− u(., .p) into (15) with pk and into (15) with p and calculate their
diference, iv) to integrate the result over I to try to get estimates of uk(., ., pk) −
u(., ., p) in appropriate norms following [10], p. 264. The lack of monotonicity, crucial
for iv), has to be overcome by more advanced tricks, inspired by the sequence of
exercises from [15], p. 66.

The sketched approach gives us only one rough information on the uncertainty
of identified characteristics: the minimal value of F . The further step of the inverse
analysis, motivated by [22], then should be to interpret P as a sample space of
elementary events, supplied by the minimal σ-algebra and by certain probability
measure P . Then, instead of (17), we should minimize

Φ(p) =
∫
P

∫
I

∫
Ξ
|u(x, t, p)− ue(x, t)|ω ds(x) dt dP , (19)

with respect to all other modified conditions, improved by P . Some preparatory
results of such type for a linearized heat transfer problem, including much more
references, remarks to direct, sensitivity and adjoint problems and to the convergence
analysis of nonlinear conjugate gradient algorithms, generalizing the Newton-type
ones, applicable to (17) (although the exact values of derivatives cannot be computed
easily), to minimize Φ, have been presented in [19]. Unfortunately, the general
case contains still open problems because of the absence of such lemmas, as the
(generalized) Aubin-Lions one by [15], p. 194, crucial for the compactness results in
the deterministic case, and corresponding interpolation ones; this makes it difficult
to replace I from (17) by I × P from (19) with some probabilistic measure.
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4. Conclusion

We have shown that the proper analysis of the heat transfer equation with
temperature-variable characteristics, including the inverse problem of identification
of such characteristics, open to the uncertainty estimates, too, brings substantial
difficulties in comparison with the linearized model problems. However, these diffi-
culties can be overcome by means of recent functional and numerical analysis. More
detailed considerations (including complete proofs) should be published in the near
future.

The further research is motivated by the design of thermal accumulator, men-
tioned in Introduction, although the deep mathematical analysis does not seem to be
its most important part. Some original experimental devices and MATLAB-based
software packages have been prepared; the complete technical equipment must be
functional until the end of 2014.
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[1] André, S., Rémy, B., Pereira F. R., and Cella, N.: Hot wire method for the
thermal characterization of materials: inverse problem application. Engenharia
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cional 6 (2005), 273–284.
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