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Abstract

This paper describes a model of influence of random errors on the safety of the
communication. The role of the communication in railway safety is specified.

To ensure a safe communication, using of safety code is important. The most
important parameter of the safety code is the maximal value of the probability of
undetected error. Problems related with computing of this value are outlined in the
article. As a model for the information transmission the binary symmetrical channel
is introduced.

The usability of the concept of a ’proper’ code is discussed.

1. Introduction

This article discuss safety of communication between components of a railway
interlocking systems (for example level crossings). The term safety is defined as
absence of unacceptable level of hazard. This definition is not quite understandable
without an additional explanation. However, for purpose of this paper it is sufficient
to consider the word “safety” in its common sense.

The safety of a system has two main aspects. A functional safety concerns the
manner how the system reacts on various combinations of outer inputs and its inner
states (“what does it do?”). A safety integrity means ability of the system to really
perform required functions (“does it really work?”). The safety integrity concerns the
resistance of the system against both systematic and random errors. Nevertheless,
only the requirements on the integrity in relation to random errors can be quantified.

This paper focuses on only a small part of the safety issues, in particular on
a model of influence of random errors on the safety integrity, namely on communi-
cation safety.
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1.1. Communication safety

Let us introduce the term “safe communication”. A safe communication must
ensure the following requirements:

• a message originates from the intended source (message authenticity),

• received information is complete and unchanged (integrity),

• messages are delivered in the right time (timeliness), and

• in the right sequence (correct ordering).

Some applications require confidentiality as an additional safety service – that the
information cannot be disclosed to unauthorized subjects.

Many techniques can be used to ensure the safety services introduced above.
Since every from these techniques provides protection against separate elementary
errors, usually combination of several of them is employed. We can add a sequence
number, a time stamp, or source and recipient identifier to the message. We can
check the maximum time delay between two messages. The receiver can send an
acknowledge message back to the sender. We can introduce a more sophisticated
procedure of identification of communication participants. We can secure the mes-
sage by a safety code or by cryptographic techniques.

The safety code has a special position among defense techniques, as it is the
unique method of protection of messages against corruption. A safety-responsible
protocol layer then should implement safety code to ensure integrity of messages.
International safety standards for various types of systems state the usage of safety
codes as mandatory requirement (for example [1] for railway applications).

2. Safety codes

An error detection code is a code detecting presence of some amount of errors in
received messages. Error detection codes are used to overcome or reduce the impact
of communication channel errors. However, these codes cannot provide a perfect
protection and some amount of residual errors passes through undetected. Quantifi-
cation of probability of occurrence of a residual error is a keystone of the probabilistic
safety integrity study. A safety code is an error detection code used as a means to
ensure safety in safety relevant communication system.

2.1. Linear binary codes

The “code-related” terminology in this paper is based on terms used in mathe-
matical coding theory (see for example [3]). In this article we restrict ourselves
only to linear binary detection codes, with codewords of length n bits, and with
k information bits, defined as follows:

A linear binary (n, k)−code K is any k-dimensional subspace of the space Zn

2
.

Traditionally, binary vectors from Zn

2
are called words ; the words from the code K

125



are codewords. In the (n, k)−code the codeword length is n, number of information
bits is equal to k and number of redundant bits is equal to n− k.

The most simple example of the linear binary code is a parity check. The even
parity code consists from all words of the given length n, in which the count of ones
is even. This code has n− 1 information bits and 1 redundant bit. The parity check
is used as a safety code in most harware and software applications.

2.2. Error detection

In transfer of the encoded information in the space (transmission and reception
of the message) or in the time (usage of data storage medium to record and later
restore the message) the message can be modified by various external influences. On
the level of individual bits, a modification can manifest by missing or superfluous
bit(s), or by altered bits with overall number of bits preserved. In this paper, we
ignore the first type of modification (synchronization slip) and focus solely on the
second type – modifications that do not change the number of bits.

Let us describe the mechanism of detecting these modifications. A source intends
to send a k-bit message. The error detecting code generates an n-bit codeword u, and
the source transfers this codeword. A target receives an n-bit word v from Zn

2
, not

necessarily a codeword. If the received word v is not a codeword, then the receiver
detects an error.

The second possibility is that the received word v is a codeword. Then there
are two possible scenarios: The received codeword v is equal to the original code-
word u, because there were no modifications in transfer. Alternatively the received
codeword v is different from the original codeword u, because a modification during
transfer unfortunately creates some codeword. The receiver has no possibility to rec-
ognize, which one from this scenarios occurs. The second scenario is then bad and
results in an undetected error. The probability of such undetected error of error de-
tection codes used in safety relevant applications (including transportation control)
is very important safety parameter.

The difference v−u between the received word v and the original word u is called
an error word. The undetected error words of a linear code are all nonzero codewords
of the given code, due to its linearity (see for example [3]). This is a great advantage
of using of linear codes, as this make probability calculations more feasible than for
other types of codes.

2.3. Weight structure

We define the Hamming weight of a word as the count of non-zero bits in the
word. Then we define the minimal distance of a linear code as the smallest non-zero
Hamming weight of its codeword.

The minimal distance of a linear code sets the ability of the code to detect some
classes of transmission errors. A code with minimal distance d will detect all errors
with at most d − 1 modified bits in transmitted codeword (see [3]). Such a code
will not detect all errors with d or more modified bits. Nevertheless, some cases of
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modifications of d or more symbols will be detected. Various codes with equal n, k,
and d differ in their capability of detecting modifications with d or more changes,
and thus such codes differ in their undetected error probability.

For more detailed description of the code we define a weight structure of the
code as a vector A = (A1, A2, . . . , An), where Ai denotes count of codewords with
Hamming weight equal to i. For linear codes, the weight structure is fully sufficient
for description of the ability of the code to detect modifications of d or more symbols,
as we show in the following analysis.

2.4. Probability of undetected error

Let us derive a formula for the probability of undetected error of binary linear
code. This probability is equal to probability of receiving a non-zero codeword if the
zero codeword is transmitted (for details see [3]).

Consider a transmission of the zero codeword. Suppose we received a word with
exactly i non-zero bits. The probability that the received word is a codeword is the
ratio between the count of all codewords with i non-zero symbols (Ai from the weight

structure of the code), and count of all words with i non-zero bits
(

n

i

)

. Denoting Pi

the probability that received word has exactly i wrong bits, then the probability Pud

of an undetected error of the code is equal to

Pud =
n
∑

i=1

Pi

Ai
(

n

i

) . (1)

The probability Pi that exactly i bits are modified during transmission is inde-
pendent of the code properties, and depends solely on conditions of the information
transmission.

There are various models of communication channels, with varying character-
istics. Choosing the right model of a communication channel that corresponds to
real-world conditions, and produces useful results in our calculations is rather a dif-
ficult process.

2.5. Binary symmetrical channel

The most frequently used transmission channel model is a memoryless binary
symmetrical channel (BSC). This is a simple probability model based on a bit trans-
mission, parametrized by a constant probability of bit modification pe (bit error
rate). In this model, a transmitted bit is modified during the transmission with the
probability pe, regardless of its original value and independently of other bits in the
transmission.

In the BSC model, the probability that a word with n bits is received with i bits
modified is equal to

Pi =
(

n

i

)

pi
e
(1− pe)

n−i. (2)
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Substituting (2) to the formula (1), for the probability of undetected error we get:

Pud(pe) =
n
∑

i=1

pe
i(1− pe)

n−iAi. (3)

For a final calculation, it is necessary to know Ai, the quantities of codewords
with the Hamming weight equal to i. A binary linear (n, k)-code is a k-dimensional
linear subspace of Zn

2
. It has exactly 2k elements, and thus

A0 + A1 + . . .+ An = 2k.

As every linear code contains a zero word, A0 equals one. For minimal distance of
the code equals to d, A1, A2, . . . , Ad−1 equals zero.

Other values of Ai are known only for a few types of specially constructed codes.
The calculation of Ai for a general type of a code takes a lot of time and involves
generation of 2n−k codewords. (For more details see for example [3].) The generation
of the codewords is not complicated and easily parallelizable, however the time spent
is still enormous even for commonly used values n− k (32, 48, 64 or 96).

2.6. ‘Good’ and ‘proper’ code

Because computing of the weight structure of a code is very troublesome, there
are efforts to find some more manageable method of determination of the probability
of undetected error of the code.

First, it is not necessary to know a complete course of the function Pud(pe); for
subsequent safety considerations its maximum value is sufficient.

Second, we need not consider all possible values of the bit error probability pe.
A channel with bit error probability pe = 1 exactly inverts every transmitted message.
Generally, channels with bit error probability higher than 1/2 have tendency to invert
messages rather than transmit them unchanged. If a code does not contain a word
with all bits equal to one, then all inversions of a codeword are detected. Therefore,
for such codes it is sufficient to consider values of the pe in the interval [0, 1/2].

Introducing the boundary value pe = 1/2 into formula (3) for undetected error
probability in the BSC, it follows

Pud(1/2) =
2k − 1

2n
< 2k−n.

We underline that this estimate is the same for every binary linear (n, k)−code.
Moreover, the estimate Pud(pe) < 2k−n it fulfilled in some small neighbourhood of 1/2,
but not on the whole interval from zero to one.

In the case that the estimate Pud(pe) < 2k−n is valid on the whole interval [0, 1/2],
we need not examine the code any more. This is a motivation for following definitions
of the terms ‘good’ and ‘proper’ code:
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• A binary linear (n, k)-code is ‘good’, if for all pe ∈ [0, 1/2] the inequality
Pud(pe) < 2k−n is valid.

• A binary linear (n, k)-code is ‘proper’, if the function Pud(pe) is monotone
increasing on the interval [0, 1/2].

It is evident that a ‘proper’ code is always ‘good’ as well, and after then the term
‘proper’ seems to be redundant. However, this term has its sense: on less erroneous
channels the ‘proper’ code has a lower failure probability than on more erroneous
ones. This is reasonable behaviour.

The second reason for introducing the term ‘proper’ code is that the monotonicity
of the function Pud(pe) can be generally proven for some classes of codes. These
codes are consequently ‘good’ and theirs probability of undetected error in the BSC
is upperbounded by the known value 2k−n, which can be used in following safety
calculations of the whole system.

As consequence of this, it was widely supposed among safety engineers, that all
“reasonable” codes are ‘proper’, or at least “almost proper”. In fact, codes really
used in practice very often are not ‘proper’ and their probability of undetected error
exceeds the value 2k−n, often very strongly. Usually this occurs for relatively low
values of the bit error rate pe. For example, we found a code with maximal value
of the probability of undetected error more than thousand times higher than 2k−n.
Therefore, the execution of a probabilistic analysis using BSC is necessary in all
cases.

The evaluation of the maximal value of the probability of undetected error has to
be done numerically. When the code is not ‘proper’, the most successful procedure is
based on the Newton’s method with adaptive precision computation. As the function
Pud(pe) is almost constant on the most part of its rank, this calculation is complicated
and time-consuming as well. For recognition that the code is not ‘proper’, it is very
useful to use the binomial moments (for more details see [2]).

3. Conclusion

The calculation of the maximal value of probability of undetected error is a la-
boured and often very lengthy process. Nevertheless, it is essential for evaluation
safety parameters of the whole systems and cannot be omitted. On the other hand,
safety codes contribute to the overall safety of the railway traffic only by a small
part.

The reasons of most railway accidents are simple. In the past, unpredictable tech-
nical failures was frequent. Presently accidents caused by neglecting of maintenance
or by failure of operator predominate. Both of them are human factor failures. As
far as we know, no one railway accident caused by failure of safety code was recorded.

Recent interlocking systems pass to unified interoperable communication inter-
faces, usually designated for employment in open transmission systems (European
systems ERTMS/ETCS, GSM-R, EURORADIO protocol). Safety codes in this sys-
tems use cryptographic techniques. These cannot be evaluated by the above men-
tioned method.
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Figure 1: An example of codes, which are not ‘proper’. These are five different
codes, created by shortening of the same code. The codeword lengths n of these
codes vary from 64 to 96 bits, number of redundant bits k − n is 32 for all of them.
The horizontal line near to the bottom edge of the graph is the constant 2−32. The
maximal value of probability of undetected error is more than 50-times higher than
this value for the worst code with the codeword length 72 bits.

Another open problem is an ensuring of the independence between safety and
transmission codes. Actually, there does not exist consensus even about the definition
of this independence.
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