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Institute of Mathematics ASCR,Prague2013

A SHORT PHILOSOPHICAL NOTE ON THE ORIGIN OF

SMOOTHED AGGREGATIONS
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Abstract

We derive the smoothed aggregation two-level method from the variational objec-
tive to minimize the final error after finishing the entire iteration. This contrasts to
a standard variational two-level method, where the coarse-grid correction vector is
chosen to minimize the error after coarse-grid correction procedure, which represents
merely an intermediate stage of computing. Thus, we enforce the global minimization

of the error. The method with smoothed prolongator is thus interpreted as a qualita-
tively different, and more optimal, algorithm than the standard multigrid.

1. Introduction

The smoothed aggregation method [13, 14, 15, 12] proved to be a very efficient
tool for solving various types of elliptic problems and their singular perturbations.
In this short note, we turn to the very roots of smoothed aggregation method and
derive its two-level variant on a systematic basis.

The multilevel method consists in combination of a coarse-grid correction and
smoothing. The coarse-grid correction of a standard two-level method is derived
using theA-orthogonal projection of an error to the range of the prolongator. In other
words, the coarse-grid correction vector is chosen to minimize the error after coarse-
grid correction procedure. This means, the standard two-level method minimizes the
error in an intermediate stage of the iteration, while we are, naturally, interested in
minimizing the final error after accomplishing the entire iteration. In other words, we
strive to minimize the error after coarse-grid correction and subsequent smoothing.
The two-level smoothed aggregation method is obtained by solving this minimization
problem. This, in the opinion of the authors, explains its remarkable robustness.

We derive the two-level smoothed aggregation method from the variational objec-
tive to minimize the error after coarse-grid correction and subsequent post-smoothing.
Then, by a trivial argument, we extend our result to the two-level method with pre-
smoothing, coarse-grid correction and post-smoothing.
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The minimization of error after coarse-grid correction and subsequent smooth-
ing leads to a method with smoothed prolongator. We can say that by smoothing
the prolongator, we adapt the coarse-space (the range of the prolongator) to the
post-smoother so that the resulting iteration is as efficient as possible. Our short
explanation applies to any two-level method with smoothed prolongator. The partic-
ular case we have in mind is, however, a method with smoothed tentative prolongator
given by generalized unknowns aggregations [15]. The discrete basis functions of the
coarse-space (the columns of the prolongator) given by unknowns aggregations have
no overlap; the natural overlap of discrete basis functions (like it is in the case of
finite element basis functions) is created by smoothing and, for additive point-wise
smoothers, leads to sparse coarse-level matrix.

Our argument is basically trivial. It, however, shows a fundamental property of
the method with smoothed prolongator, that is essential. This argument is known
to the authors for a long time, but has never been published.

We conclude our paper by a numerical test. Namely, we demonstrate experimen-
tally that smoothed aggregation method with powerful smoother and small coarse-
space solves efficiently highly anisotropic problems without the need to perform semi-
coarsening (the coarsening that follows only strong connections).

2. Two-level method

We solve a system of linear algebraic equations

Ax = f , (1)

where A is a symmetric positive definite matrix of order n and f ∈ IRn. We assume
that an injective linear prolongator p : IRm → IRn, m < n is given.

The two-level method consists in the combination of a coarse-grid correction
and smoothing. The smoothing means using point-wise iterative methods at the
beginning and at the end of the iteration. The coarse-grid correction is derived by
correcting an error e by a coarse-level vector v so that the resulting error e− pv is
minimal in A-norm. In other words, we solve the minimization problem

find v ∈ IRm so that ‖e− pv‖A is minimal. (2)

It is well-known that such vector pv is an A-orthogonal projection of the error e onto
Range(p), with the projection operator given by

Q = p(pTAp)−1pTA.

Thus, the error propagation opeartor of the coarse-grid correction is given by I−Q =
I − p(pTAp)−1pTA and the error propagation operator of the two-level method by

ETGM = Spost[I − p(pTAp)−1pTA]Spre, (3)
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where Spre and Spost are error propagation operators of pre- and post- smoothing
iterations, respectively.

Clearly, for the error e(x) ≡ x − A−1f we have Ae(x) = Ax − f . Hence, the
coarse-grid correction can be algorithmized as

x← x− p(pTAp)−1pT (Ax− f)

and the variational two-level algorithm with post-smoothing step proceeds as follows:

Algorithm 1

1. Pre-smooth: x← Spre(x, f),

2. evaluate the residual: d = Ax− f ,

3. restrict the residual: d2 = pTd,

4. solve a coarse-level problem A2v = d2, A2 = pTAp,

5. correct the approximation x = x− pv,

6. post-smooth x = Spost(x, f).

Here, Spre(., .) and Spost(., .), respectively, represent one or more iterations of point-
wise iterative methods for solving (1).

The coarse-grid correction vector v is chosen to minimize the error after Step 5 of
Algorithm 1. Thus, we conclude that in the case of a standard variational multigrid,
the coarse-grid correction procedure minimizes the error in an intermediate stage
of the iteration, while we are in fact interested in minimizing the final error after
accomplishing the entire iteration. This means to minimize the error after coarse-grid
correction with subsequent smoothing.

3. The smoothed aggregation two-level method

In the smoothed aggregation method, we construct the coarse-grid correction
to minimize the error after coarse-grid correction with subsequent smoothing, which
means the final error on the exit of the iteration procedure. The minimization of the
error after pre-smoothing, coarse-grid correction and post-smoothing then follows
immediately by a trivial argument.

Let S be the error propagation operator of the post-smoother S(., .) = Spost(., .).
Throughout this section we assume that S is sparse. This is due to the fact that
the above minimization problem leads to smoothed prolongator P = Sp and we
need a sparse coarse-level matrix A2 = P TAP . The additive point-wise smoothing
methods have, in general, sparse error propagation operator; this is the case of Jacobi
method or Richardson’s iteration.
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For a multilevel method with post-smoothing only, the error after coarse-grid
correction and subsequent smoothing is given by

S(e− pv), (4)

where v is a correction vector and e the error on the entry of the iteration procedure.
We choose v so that the error in (4) is minimal in A-norm, that is, we solve the
minimization problem

find v ∈ IRm such that ‖S(e− pv)‖A is minimal. (5)

Since ‖S(e− pv)‖A = ‖e− pv‖STAS, the minimum is attained for v satisfying

〈STAS(e− pv), pw〉 = 0 ∀w ∈ IRm.

We have 〈STAS(e − pv), pw〉 = 〈pTSTAS(e − pv),w〉, hence the above identity is
equivalent to pTSTASpv = pTSTASe and setting P = Sp, it becomes

P TAPv = P TASe. (6)

Here, e is the error on the entry of the iteration procedure. Assume for now that
P is injective. Then by (6), we have v = (P TAP )−1P TASe and the error after
coarse-grid correction and subsequent smoothing is given by

S(e− pv) = S
[

e− p(P TAP )−1P TASe
]

=
[

I − P (P TAP )−1P TA
]

Se. (7)

By comparing the operator

E =
[

I − P (P TAP )−1P TA
]

S (8)

on the right-hand side of (7) with (3), we identify E as the error propagation operator
of the variational multigrid with smoothed prolongator P = Sp and pre-smoothing
step given by x← S(x, f). The algorithm is as follows:

Algorithm 2

1. Pre-smooth: x← S(x, f),

2. evaluate the residual: d = Ax− f ,

3. restrict the residual: d2 = P Td,

4. solve the coarse-level problem: A2v = d2, A2 = P TAP ,

5. correct the approximation: x← x− Pv.

Remark 3.1 Note that in the process of the deriving the algorithm in (7), our
post-smoother have become a pre-smoother. Nothing was lost in that process; the
algorithm minimizes the final error and takes into account the pre-smoother.
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Remark 3.2 The smoothed prolongator P = Sp is potentially non-injective, hence
the coarse-level matrix A2 = P TAP is potentially singular. In this case, we need to
replace the inverse of P TAP in (7) by a pseudo-inverse.

We summarize our considerations in the form of a theorem.

Theorem 3.3 The error propagation operator E in (8) (the error propagation opera-
tor of Algorithm 2) satisfies the identity

‖Ee‖A = inf
v∈IR

m
‖S(e− pv)‖A

for all e ∈ IRn.

Proof. The proof follows directly from the fact that Algorithm 2 was derived
from variational objective (5).

Remark 3.4 One may also start with the variational objective to minimize the
final error after performing the pre-smoothing, the coarse-grid correction and the
post-smoothing. Such extension is trivial, the pre-smoother has no influence on the
coarse-grid correction operator I − P (P TAP )−1P TA and influences only its argu-
ment. Indeed, asuming the error propagation operator of the pre-smoother is S∗

(the A-adjoint operator), the final error is given by S(S∗e − pv) and we solve the
minimization problem

for e ∈ IRn find v ∈ IRm : ‖S(S∗e− pv)‖A is minimal. (9)

Fundamentally, this is the same minimization problem as (5); to derive the cor-
responding algorithm, it is simply sufficient to follow our manipulations from (5)
to (7) with e ← S∗e. This way, we end up with a two-level method that has the
error propagation operator

E =
[

I − P (P TAP )−1P TA
]

SS∗, (10)

(see (3)) that is, with the algorithm

Algorithm 3

1. Pre-smooth: x← St(x, f), where St is an iterative method with error propaga-
tion operator S∗,

2. pre-smooth: x← S(x, f), where S is an iterative method with error propagation
operator S,

3. evaluate the residual: d = Ax− f ,

4. restrict the residual: d2 = P Td,

5. solve the coarse-level problem: A2v = d2, A2 = P TAP ,

6. correct the approximation: x← x− Pv.

We summarize the content of Remark 3.4 as a theorem.
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Theorem 3.5 The error propagation operator (10) of Algorithm 3 satisfies the iden-
tity

‖Ee‖A = inf
v∈IR

m
‖S(S∗e− pv)‖A

for all e ∈ IRn.

Proof. The proof follows directly from the fact that Algorithm 3 was derived
from variational objective (9).

Remark 3.6 Our manipulations hold equally for a general pre-smoother with error
propagation operator M 6= S∗, simply by replacing S∗ ←M . The error propagation
operator M has no influence on the coarse-space and thus it does not have to be
sparse.

4. Numerical example

To demonstrate the robustness of smoothed aggregation method, we consider
the algorithm of [6] which is a modification of the method proposed and analyzed
in [8] and [10]. Its relationship to Algorithm 2 is obvious. This method uses the
smoothing iterative method S(·, ·) which is a sequence of Richardson’s iterations
with carefully chosen iteration parameters. The error propagation operator S of the
smoother S(·, ·) is therefore a polynomial in the matrix A.

In this method, we use massive smoother S and a small coarse-space resulting in
sparse coarse-level matrix.

Let λ̄ ≥ ̺(A) and d be the desired degree of the smoothing polynomial S. We
set

αi =

[

λ̄

2

(

1− cos
2iπ

2d+ 1

)

]

−1

, i = 1, . . . , d, (11)

S = (I − α1A) . . . (I − αdA) (12)

and
P = Sp.

Here, p is a tentative prolongator given by generalized unknowns aggregation. The
simplest aggregation method is described in this section.

The smoother S is chosen to minimize ̺(S2A). The reason for this comes from
the fact that the convergence of the method of [6] is guided by the constant C in the
weak approximation condition

∀e ∈ IRn ∃v ∈ IRm : ‖e− pv‖ ≤
C

√

̺(S2A)
‖e‖A. (13)

The smaller ̺(S2A), the easier it becomes to satisfy (13) with a reasonable (suffi-
ciently small) constant. It holds that ([6])

λ̄S2A ≡
λ̄

(1 + 2d)2
≥ ̺(S2A). (14)

72



The aggregates {Aj} are sets of fine-level degrees of freedom that form a disjoint
covering of the set of all fine-level degrees of freedom. For example, we can choose
aggregates to form a decomposition of the set of degrees of freedom induced by
a geometrically reasonable partitioning of the computational domain. For standard
discretizations of scalar elliptic problems, the tentative prolongator matrix p is the
n×m matrix (m = the number of aggregates)

pij =

{

1 if i ∈ Aj,
0 otherwise,

(15)

that is, the j-th column is created by restricting a vector of ones onto the j-th aggre-
gate, with zeroes elsewhere. Thus, the aggregation method can be viewed as a piece-
wise constant coarsening in a discrete sense. The generalized aggregation method,
suitable for non-scalar elliptic problems (like that of linear elasticity), is described
in [15].

Algorithm 4 Given the degree d of the smoothing polynomial S = pol(A), the
smoothed prolongator P = Sp where p is the tentative prolongator and the pro-
longator smoother S is given by (12), the upper bound λ̄ ≥ ̺(A) and a parameter
ω ∈ (0, 1), one iteration of the two-level algorithm

x← TG(x, f)

proceeds as follows:

1. perform

x← x−
ω

λ̄S2A

S2(Ax− f),

where λ̄S2A is given by (14) and S by (12),

2. perform the iteration with symmetric error propagation operator S given by (12),
that is,
for i = 1, . . . , d do

x← (I − αiA)x+ αif ,

3. evaluate the residual d = Ax− f ,

4. restrict the residual d2 = P Td,

5. solve the coarse-level problem A2v = d2, A2 = P TAP ,

6. correct the approximation x← x− Pv,

7. for i = 1, . . . , d do
x← (I − αiA)x+ αif ,

8. perform

x← x−
ω

λ̄S2A

S2(Ax− f).
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512 000 dofs, coarse space 512 dofs, deg(S) = 7, H/h = 9.
ε rate of conv. qN no. iter. N

1000 0.321 19
100 0.241 15
10 0.137 11
1 0.131 11
0.1 0.221 14
0.01 0.317 19
0.001 0.300 18

Table 1: 3D anisotropic problem

Thus, Algorithm 4 is a symmetrized version of Algorithm 2 with added smoothing
in steps 1 and 8.

It is generally believed that in order to solve efficiently an anisotropic problem,
one has to perform coarsening only by following strong connections. This technique
is called semi-coarsening. In our case, we form aggregates by coarsening by a factor
of 10 in all 3 spatial directions, which means, we do not perform semi-coarsening.
Despite of this fact, our method gives satisfactory results regardless of the anisotropy
coefficient ε. In this experiment, the symmetric Algorithm 4 is used as a conjugate
gradient method preconditioner.

Test problem

• Problem:

−

(

∂2

∂x2
+ ε

∂2

∂y2
+

∂2

∂z2

)

u = f on Ω = (0, 1)3, u = 0 on ∂Ω. (16)

• Mesh: 82 × 82 × 82 regular square mesh, 512 000 unconstrained degrees of
freedom.

• Aggregates: cubic groups of 10× 10× 10 unconstrained vertices.

• Coarse-space size: 512 degrees of freedom.

• Degree of smoothing polynomial: 7.

• Stopping criterion: relative residual < 10−9.

The results are summed up in Table 1. Note that here, the estimate of the rate
of convergence after N iterations is defined as

qN =
(

‖AxN − f‖/‖Ax0 − f‖
)

1

N .

Here, xi denotes the i-th iteration.
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[13] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing
transfer operator. Appl. Math. 37 (1992).
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