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Professor Karel Segeth is seventy

Karel Segeth was born on May 10, 1943 in Prague. His father taught biology and
geography in secondary school and his mother was a pediatrician. While in elemen-
tary and secondary school Karel regularly took part at the Mathematical Olympiad
and got several diplomas. In 1964, he finished his studies at the Faculty of Mathe-
matics and Physics of Charles University in Prague and started to work as research
assistant in the Mathematical Institute of the Czechoslovak Academy of Sciences.
He spent three months of 1966 in academical institutions in Novosibirsk, Moscow,
and Kiev. During the period 1969–1970 he worked at the University of Maryland in
College Park, where he developed numerical software for Prof. Ivo Babuška. In 1969
he received the academic title RNDr. from the Faculty of Mathematics and Physics
of Charles University and three years later he defended his doctoral thesis On uni-
versally optimal quadrature formulae involving values of derivatives of integrand at
the Mathematical Institute of the Academy and got the scientific degree Candidate
of Sciences (equivalent to PhD). His advisor was Ivo Babuška. In 1996 Karel Segeth
passed his habilitation at the Faculty of Mathematics and Physics of Charles Uni-
versity and received the title Doc. (equivalent to Associate Professor). In 2004 he
became Full Professor in Applied Mathematics at the University of West Bohemia
in Pilsen.

The scientific activities of Prof. Segeth are very broad. Among computational
methods for numerical solution of partial differential equations, he deals with prob-
lems in geophysics, archaeology, and also in medicine (e.g. diffusion in layered struc-
tures of the human brain). No wonder that he publishes his results in an exten-
sive spectrum of scientific journals, such as Numerische Mathematik, Geophysics,
Applications of Mathematics, Biophysical Journal, Czechoslovak Mathematical Jour-
nal, Tectonophysics, International Journal for Numerical Methods in Fluids, Com-
puters & Geosciences, and Mathematics and Computers in Simulation.
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The main research interest of Prof. Segeth is the solution of problems of mathe-
matical physics and numerical modeling of physical phenomena (e.g. semiconductor
devices, electric and magnetic fields). At present, Prof. Segeth examines mainly
a posteriori bounds for the discretization error in numerical solutions of differential
equations. Their analytical solution in explicit form is usually not known. There-
fore, some approximate methods need to be used. Once the approximate solution
is computed, the discretization error can be estimated a posteriori by means of so-
phisticated mathematical methods. Prof. Segeth focuses on the finite element and
finite volume methods for numerical solution of boundary value problems for par-
tial differential equations of elliptic type and also the method of lines for solving
initial-boundary value problems for nonlinear evolution equations of parabolic type.
This has a close connection to his interest in numerical solution of large systems of
algebraic equations by the methods of cyclic reduction and conjugate gradients, fast
Fourier transform, the multigrid method, etc. Prof. Segeth showed the practical
importance of a posteriori error estimates of the discretization error, which can be
effectively used in the finite element method for adaptive mesh refinements.

Further areas of interest of Prof. Segeth are mathematical methods for solving
real-life problems in geophysics and archaeology. At present he deals with numerical
simulation of solid particles in slowly flowing viscous liquids. For many years he
cooperated with Professor Irwin Scollar from the Laboratorium für Feldarcheologie,
Rheinisches Landesmuseum in Bonn. By means of the Fourier analysis of aerial pho-
tographs or terrain data (gravitational or electromagnetic) they developed methods
for discovering new archaeological deposits (see Pokroky Mat. Fyz. Astronom. 2011,
pp. 213–227) and mineral resources. The Fourier transform is also at the basis of one
of his other favourite topics, namely the implementation of so-called fast algorithms
(see e.g. his paper in Pokroky Mat. Fyz. Astronom. 2008, pp. 199–210). He has
been contributing to this journal for many years. He published many articles in it
and prepared several interesting translations.

He wrote his first monograph Mathematical Modeling in Electromagnetic Prospect-
ing Methods, Charles University, Prague, 1982, 133 pp., together with Václav Bez-
voda. Segeth’s rich experience with the method of lines and numerical algebra are
included in another monograph Higher-Order Finite Element Methods (coauthors
P. Šoĺın and I. Doležel), Chapman & Hall/CRC, London, 2004, 403 pp., which has got
many citations. He also contributed to Rektorys’ Survey of Applicable Mathematics,
Prometheus, Prague 1995, whose English version appeared in the prestigious pub-
lishing house Kluwer in 1994. Prof. Segeth is coeditor of 16 conference proceedings
Programs and Algorithms of Numerical Mathematics, that he coorganizes with his
colleagues from the Institute of Mathematics. His excellent knowledge of languages
helped him to translate several important monographs on numerical linear algebra
and continuum mechanics. Together with Petr Přikryl he translated the monograph
by Jindřich Nečas and Ivan Hlaváček from Czech into English, as well as a book by
Miroslav Fiedler. They also translated the famous treatise of A. A. Samarskij and
J. S. Nikolajev from Russian into Czech, and another monograph by G. I. Marchuk.
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Prof. Segeth has a rich pedagogical experience due to the many decades that
he worked at several Czech universities, such as the Faculty of Mathematics and
Physics and Faculty of Sciences of Charles University in Prague, Faculty of Me-
chanical Engineering of Czech Technical University in Prague, Faculty of Applied
Sciences of the University of West Bohemia in Pilsen and Technical University of
Liberec. He lectured numerical methods for solving large sparse systems, numerical
software, programming in FORTRAN, numerical modeling of problems in electrical
engineering, but also basic courses in mathematics. He is the author or coauthor of
eight lecture notes. He was advisor of ten diploma students and of PhD students
M. Posṕı̌sek, P. Vaněk, V. V. Vlček, and M. Źıtka. He was invited to give lectures at
several world-wide known universities: Wayne State University in Detroit, the Uni-
versity of Texas at Austin, A & M University of Texas, the University of Maryland,
the State University of New York, Keio University of Yokohama, Flinders University
in Adelaide as well as at many European universities.

Due to his brilliant organization capabilities he was the Secretary of the Scien-
tific Collegium for Mathematics of the Czechoslovak Academy of Sciences from 1982
to 1992, which was headed at that time by Prof. Miloš Zlámal. In 1994 Karel Segeth
succeeded Dr. Milan Práger as the Head of the Department of Constructive Methods
of Mathematical Analysis of the Mathematical Institute, and at the same time he
was elected as the Head of the Scientific Council of the Mathematical Institute. After
that he was the Director of the Mathematical Institute for two periods (1996–2000
and 2000–2004). From 2004 to 2009 he was the Head of the Department of Mathe-
matics and Didactics of Mathematics of the Technical University of Liberec. During
the period 2004–2008 he also headed the Department of Applied Mathematics there.
He was a member of five scientific councils of university faculties at Prague, Olo-
mouc, Liberec, and Pilsen. At present he is still a member of the Scientific Council
of the University of West Bohemia in Pilsen. Together with the Union of Czech
Mathematicians and Physicists and the Czech Society for Mechanics, and with great
enthusiasm, he has started to organize the Babuška Prize for the best student work
in the field of Computer Science in 1994.

Since 1996 Prof. Segeth is a member of the Union of Czech Mathematicians and
Physicists. In 2003 and 2004 he received two memorial medals from the Faculty of
Mathematics and Physics of Charles University. He became the Deserving Member
of the Union of Czech Mathematicians and Physicists in 2006.

To commemorate the 70th birthday of Prof. Karel Segeth we organized the Inter-
national Conference Applications of Mathematics 2013 at the Institute of Mathemat-
ics in Žitná 25, Prague 1, from 15 to 17 May 2013 (see www.math.cas.cz/∼am2013).
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The Scientific Committee consisted of

Ivo Babuška (University of Texas at Austin, USA)
Jan Brandts (University of Amsterdam, Netherlands)
Antti Hannukainen (Aalto University, Finland)
Sergey Korotov (Basque Center for Applied Mathematics, Spain)
Qun Lin (Academy of Mathematics and Systems Science, China)
Liping Liu (Lakehead University, Canada)
Milan Práger (Academy of Sciences, Czech Republic)
Lawrence Somer (Catholic University of America, USA)
Emil Vitásek (Academy of Sciences, Czech Republic)
Shuhua Zhang (Tianjin University of Finance and Economics, China)
Zhimin Zhang (Wayne State University, USA)

The Local Organizing Committee (Academy of Sciences) consisted of
Hana B́ılková
Michal Kř́ıžek (Chair)
Jakub Š́ıstek
Tomáš Vejchodský

Karel Segeth is married with Dr. Jitka Segethová, a granddaughter of mathe-
matician Prof. Josef Holubář. She taught mostly numerical methods at the Faculty
of Mathematics and Physics of Charles University in Prague. Karel and Jitka have
two daughters, Jitka and Jana, and two grandchildren. We wish Prof. Karel Segeth
and his family enduring happiness and good health.

Jan Brandts and Michal Kř́ı̌zek

The Organizing Committee is gratefull to all authors for their contributions and to Grant
MTM2011-24766 of MICINN (Spain).
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LIST OF PUBLICATIONS OF KAREL SEGETH

with references to Zentralblatt and Mathematical Reviews

B. Books and chapters in monographs

[B1] V. Bezvoda, K. Segeth: Mathematical modeling in electromagnetic pro-
specting methods. Praha, Univerzita Karlova 1982, 133 pp.

[B2] J. Segethová, K. Segeth: Numerical methods in linear algebra. Survey of
Applicable Mathematics. 2nd revised ed. Dordrecht, Kluwer Academic Pu-
blishers 1994, Vol. 2, 594–647.

[B3] J. Segethová, K. Segeth: Numerické metody lineární algebry. Přehled
užité matematiky. 6. přepracované vydání. Praha, Prometheus 1995, díl 2,
552–602.

[B4] P. Šolín, K. Segeth, I. Doležel: Higher-order finite element methods. Stu-
dies in Advanced Mathematics. Boca Raton, Chapman & Hall/CRC 2004,
403 pp. + CD ROM. Zbl 1032.65132, MR2000261

[B5] K. Segeth, J. Chleboun: Ivo Babuška. Sto českých vědců v exilu. Praha,
Academia 2011, 215–218.

[B6] K. Segeth: On the advantages and drawbacks of a posteriori error esti-
mation for fourth-order elliptic problems. Numerical Methods for differen-
tial equations, optimization, and technological problems. Dordrecht, Sprin-
ger 2013, 145–158.

J. Research papers published in journals

[J1] K. Segeth: Sravnenie točnosti nekotorych formulirovok krajevych uslovij pri
ispol’zovanii metoda setok. Apl. Mat. 10 (1965), 302–307. MR0184444

[J2] K. Segeth: On quadrature formulae involving values of derivatives. Z. An-
gew. Math. Mech. 48 (1968), T104–T105. Zbl 0184.38102

[J3] K. Segeth: On universally optimal quadrature formulae involving values of
derivatives of integrand. Czechoslovak Math. J. 19 (1969), 605–675. Zbl
0188.13203, MR0260177
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[J4] V. Bezvoda, K. Segeth: A two-layer ground in the field of an infinitely long
cable. Geophys. Prospect. 18 (1970), 343–351.

[J5] K. Segeth: Universal approximation by hill functions. Czechoslovak Math.
J. 22 (1972), 612–640. Zbl 0247.41011, MR0310502

[J6] K. Segeth: Numerické experimenty s univerzálními kopečkovými funkcemi.
Acta Polytech. Práce ČVUT Ser. IV (1973), 189–193.

[J7] K. Segeth: Universal approximation by systems of hill functions. Apl. Mat.
19 (1974), 403–436. Zbl 0305.41011, MR0388812

[J8] K. Segeth: A remark on a class of universal hill functions. Acta Univ.
Carolin. - Math. Phys. 15 (1974), 155–156. Zbl 0314.41008, MR0390598

[J9] V. Bezvoda, K. Segeth, E. Stehlík: Dvojdimenzionální směrová analýza geo-
logických dat. Acta Polytech. Práce ČVUT Ser. IV (1976), 113–118.

[J10] V. Bezvoda, K. Segeth: A contribution to the theory of electromagnetic
induction of a line source. Stud. Geophys. Geod. 20 (1976), 366–377.

[J11] V. Kolář, P. Přikryl, K. Segeth, J. Šťastna: Vliv normálových napětí na
Tomsův jev II. Vodohospodárský časopis 26 (1978), 34–48.

[J12] V. Bezvoda, E. Jelínková, K. Segeth: Modern methods of the separation
of regional and residual portions of potential fields. Acta Univ. Carolin. -
Geologica 27 (1980), 135–150.

[J13] V. Bezvoda, K. Segeth: Directional and frequency filtering of geophysical
data measured in a rectangular net. Gerlands Beiträge Geophys. 90 (1981),
133–146.

[J14] K. Segeth: Roundoff errors in the fast computation of discrete convolutions.
Apl. Mat. 26 (1981), 241–262. Zbl 0474.65025, MR0623505

[J15] V. Červ, K. Segeth: A comparison of the accuracy of the finite-difference
solution to boundary-value problems for the Helmholtz equation obtained by
direct and iterative methods. Apl. Mat. 27 (1982), 375–390. Zbl 0511.65074,
MR0674982

[J16] V. Bezvoda, K. Segeth: On the resolving power of the VLF method. Pure
Appl. Geophys. 120 (1982), 348–364.

[J17] K. Segeth: On the choice of iteration parameters in the Stone incomplete
factorization. Apl. Mat. 28 (1983), 295–306. Zbl 0532.65020, MR0710177

[J18] V. Bezvoda, K. Segeth, Č. Tomek: Combination and comparison of various
filtering techniques in processing gravity data. Ann. Geophys. 1 (1983),
229–234.

vi



[J19] V. Hašek, P. Matula, K. Segeth, J. Vignatiová: Použití výpočetní techniky
při strojovém zpracování geofyzikálních dat v archeologii. Sb. prací Filoz.
fak. Brněnské Univ. E29 (1984), 195–200.

[J20] V. Bezvoda, K. Segeth: The electromagnetic response of an inhomogeneous
layered earth - a general one-dimensional approach. Geophysics 50 (1985),
434–442.

[J21] J. Jelínek, K. Segeth, T. R. Overton: Three-dimensional reconstruction from
projections. Apl. Mat. 30 (1985), 92–109. Zbl 0576.65128, MR0778981

[J22] V. Bezvoda, K. Segeth: Počítačové zpracování obrazů. Řízení v kultuře 10
(1985), 67–73.

[J23] I. Scollar, B. Weidner, K. Segeth: Display of archaeological magnetic data.
Geophysics 51 (1986), 623–633.

[J24] V. Bezvoda, R. Farzan, K. Segeth, G. Takó: On numerical evaluation of
integrals involving Bessel functions. Apl. Mat. 31 (1986), 396–410. Zbl
0614.65012, MR0863034

[J25] M. Bálek, V. Hašek, Z. Měřínský, K. Segeth: Metodický přínos kombinace
letecké prospekce a geofyzikálních metod při archeologickém výzkumu na
Moravě. Archeologické rozhledy 38 (1986), 550–574, 598–600.

[J26] V. Bezvoda, E. Jelínková, K. Segeth: Evaluation of geochemical data acqui-
red from regular grids. Math. Geology 18 (1986), 823–843.

[J27] V. Bezvoda, K. Segeth: An application of fast algorithms to numerical
electromagnetic modeling. Geophys. Prospect. 35 (1987), 312–322.

[J28] V. Bezvoda, J. Ježek, K. Segeth: A comment on “A computer program to
perform transformations of gravimetric and aeromagnetic surveys”. Com-
puters Geosci. 14 (1988), 123–124.

[J29] M. Bálek, V. Hašek, V. Ondruš, K. Segeth: Aerial survey and geophysi-
cal methods in archaeological investigations of neolithic circular objects in
Moravia. Przeglgad Archeologiczny 36 (1989), 5–16.

[J30] V. Bezvoda, J. Ježek, K. Segeth: FREDPACK - a program package
for linear filtering in frequency domain. Computers Geosci. 16 (1990),
1123–1154.

[J31] V. Bezvoda, J. Hrabě, K. Segeth: Linear filters for solving the direct problem
of potential fields. Geophysics 57 (1992), 1348–1351.

[J32] V. Bezvoda, K. Segeth: Programs available for two-dimensional numerical
modeling of the electromagnetic field. Acta Univ. Carolin. - Math. Phys. 33
(1992), 39–52.

vii



[J33] V. Bezvoda, J. Hrabě, K. Segeth: Discussion on “A FORTRAN-77 compu-
ter program for three-dimensional analysis of gravity anomalies with vari-
able density contrast”. Computers Geosci. 18 (1992), 1287.

[J34] K. Segeth: Grid adjustment based on a posteriori error estimators. Appl.
Math. 38 (1993), 488–504. Zbl 0797.65068, MR1241452

[J35] V. Hašek, H. Petrová, K. Segeth: Graphic representation methods in
archaeological prospection in Moravia. Sb. prací Filoz. Fak. Brněnské Univ.
E38 (1993), 111–117.

[J36] K. Segeth: A posteriori error estimates for parabolic differential systems
solved by the finite element method of lines. Appl. Math. 39 (1994),
415–443. Zbl 0822.65068, MR1298731

[J37] M. Křížek, K. Segeth: Co přináší základní výzkum v numerické matematice?
Vesmír 74 (1995), 206–207.

[J38] K. Segeth: Grid adjustment for parabolic systems based on a posteriori error
estimates. J. Comput. Appl. Math. 63 (1995), 349–355. Zbl 0939.65107,
MR1365575

[J39] J. Ježek, K. Schulmann, K. Segeth: Fabric evolution of rigid inclusions
during mixed coaxial and simple shear flows. Tectonophysics 257 (1996),
203–221.

[J40] K. Segeth: A posteriori error estimates for parabolic equations applied to
the space grid adjustment. Z. Angew. Math. Mech. 76 (1996), Suppl. 1,
531–532. Zbl 0900.65268

[J41] K. Kronrádová, K. Segeth, O. Kronrád, E. Kindler: Mathematical and si-
mulation model for education and manpower planning. Z. Angew. Math.
Mech. 77 (1997), Suppl. 2, 601–602. Zbl 0900.90331

[J42] K. Segeth: A posteriori error estimates in the finite element method of lines.
Z. Angew. Math. Mech. 77 (1997), Suppl. 2, 671–672. Zbl 0900.65279

[J43] J. Ježek, S. Saic, K. Segeth, K. Schulmann: Three-dimensional hydrody-
namical modelling of viscous flow around a rotating ellipsoidal inclusion.
Computers Geosci. 25 (1999), 547–558.

[J44] K. Segeth: A posteriori error estimation with the finite element method of
lines for a nonlinear parabolic equation in one space dimension. Numer.
Math. 83 (1999), 455–475. Zbl 0936.65113, MR1715561

[J45] P. Přikryl, R. Černý, V. Havlík, K. Segeth, P. Stupka, J. Toman: Deposition
of waste water into deep mines. Environmetrics 10 (1999), 457–466.
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[J46] K. Segeth: A posteriori error estimates and grid adjustment for a nonli-
near parabolic equation. Math. Comput. Simulation 50 (1999), 331–338.
MR1717661

[J47] J. Ježek, S. Saic, K. Segeth: Numerical modellng of the movement of a rigid
particle in viscous fluid. Appl. Math. 44 (1999), 469–479. Zbl 1060.76537,
MR1727983

[J48] P. Šolín, K. Segeth: Performance of various ODE solvers on FV-semi-
discretized nonstationary compressible Euler equations. Acta Tech. CSAV
47 (2002), 47–66. MR1898098

[J49] P. Šolín, K. Segeth: Description of the multi-dimensional finite volume sol-
ver EULER. Appl. Math. 47 (2002), 169–185. Zbl 1090.65532, MR1894668

[J50] P. Šolín, K. Segeth: Examples of non-uniqueness of almost-unidirectional
gas flow. Math. Comput. Simulation 61 (2003), 229–237. Zbl 1215.76067,
MR1983671

[J51] P. Šolín, K. Segeth: Application of the method of lines to unsteady com-
pressible Euler equations. Internat. J. Numer. Methods Fluids 41 (2003),
519–535. Zbl 1078.76590, MR1951794

[J52] P. Šolín, K. Segeth: Non-uniqueness of almost unidirectional inviscid com-
pressible flow. Appl. Math. 49 (2004), 247–268. Zbl 1099.76053, MR2059429

[J53] J. Hrabě, S. Hrabětová, K. Segeth: A model of effective diffusion and tortuo-
sity in the extracellular space of the brain. Biophys. J. 87 (2004), 1606–1617.

[J54] P. Šolín, K. Segeth: A new sequence of hierarchic prismatic elements sa-
tisfying de Rham diagram on hybrid meshes. J. Numer. Math. 13 (2005),
295–318. Zbl 1089.78022, MR2189550

[J55] P. Šolín, K. Segeth: Hierarchic higher-order hermite elements on hyb-
rid triangular/quadrilateral meshes. Math. Comput. Simulation 76 (2007),
198–204. Zbl 1135.65393, MR2392478

[J56] K. Segeth: A review of some a posteriori error estimates for adaptive finite
element methods. Math. Comput. Simulation 80 (2010), 1589–1600. Zbl
1196.65173, MR2647253

[J57] K. Segeth: Fourierova analýza dvojrozměrných terénních dat. Pokroky mat.
fyz. astronom. 56 (2011), 213–227.

[J58] K. Segeth: A comparison of a posteriori error estimates for biharmonic
problems solved by the FEM. J. Comput. Appl. Math. 236 (2012), no. 18,
4788–4797. Zbl 1250.65133, MR2946409

ix



P. Research papers published in reviewed proceedings

[P1] K. Segeth: On universally optimal quadrature formulae involving values
of derivatives of integrand. Basic Problems of Numerical Mathematics 2.
Communications. (Proceedings of Conference, Liblice 1967.) Praha, Mate-
matický ústav ČSAV 1967, 10 pp.

[P2] V. Bezvoda, K. Segeth: Řešení Helmholtzovy rovnice metodou konečných
prvků. Sborník konference o aplikacích matematiky. (Olomouc 1973.) Olo-
mouc, Přírodovědecká fakulta UP 1973, 40–42.

[P3] V. Bezvoda, K. Segeth: Výpočet harmonického pole nekonečného kabelu.
Teorie a počítače v geofyzice. (Sborník 4. pracovního semináře, Loučná
n. Desnou 1974.) Brno, Geofyzika, n.p., 1974, 287–296.

[P4] V. Bezvoda, K. Segeth, E. Stehlík: Lineární filtrace jednorozměrných a dvoj-
rozměrných dat. Sborník 6. celostátní konference geofyziků. (Plzeň 1975.)
Brno, Geofyzika, n.p., 1975, díl 3, 373–389.

[P5] V. Bezvoda, K. Segeth: Program pro lineární filtraci dvojrozměrných dat.
Problémy současné gravimetrie. (Sborník referátů celostátního semináře,
Liblice 1976.) Praha, Geofyzikální ústav ČSAV 1976, 93–110.

[P6] K. Segeth: Teorie aproximací v metodě konečných prvků. Sborník před-
nášek letní školy o numerickém řešení eliptických rovnic metodou konečných
prvků. (Praha 1974.) Praha, Univerzita Karlova 1976, 57–77.

[P7] K. Segeth: Aproximace v metodě konečných prvků. Software a algoritmy
numerické matematiky. (Sborník referátů letní školy, Zadov 1975.) Praha,
JČSMF 1976, 130–141.

[P8] K. Segeth: Řešení okrajových úloh pro eliptické diferenciální rovnice meto-
dou konečných prvků. Aplikovaná matematika v inženýrské praxi. (Sborník
přednášek postgraduálního kursu, Praha 1976.) Praha, pobočka ČSVTS na
FEL ČVUT 1976, 33 pp.

[P9] V. Bezvoda, K. Segeth: Řešení jedné okrajové úlohy se singulárními daty
metodou konečných prvků. Sborník 3. semináře o metodě konečných prvků
a variačních metodách. (Plzeň 1977.) Plzeň, Škoda, n.p., 1977, díl 1, 1-9.

[P10] K. Segeth: Universal approximation in the finite element method. Theory of
Nonlinear Operators. Constructive Aspects. (Proceedings of International
Summer School, Berlin 1975.) Berlin, Akademie-Verlag 1977, 389–393. Zbl
0392.65030, MR0468247
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[P11] K. Segeth: Řešení okrajových úloh pro eliptické diferenciální rovnice meto-
dou konečných prvků. Aplikovaná matematika v inženýrské praxi. (Sborník
přednášek postgraduálního kursu, Praha 1977.) Praha, pobočka ČSVTS na
FEL ČVUT 1977, 30 pp.

[P12] M. Práger, K. Segeth: Rychlé algoritmy pro řešení úloh matematické fyziky.
Software a algoritmy numerické matematiky 2. (Sborník referátů letní školy,
Trojanovice 1977.) Praha, JČSMF 1978, 41–54.

[P13] V. Bezvoda, K. Segeth: Mathematical modeling of electromagnetic fields.
The Use of Finite Element Method and Finite Difference Method in Geo-
physics. (Proceedings of Summer School, Liblice 1977.) Praha, Geofyzikální
ústav ČSAV 1978, 329–332.

[P14] K. Segeth: Approximation in the finite element method I. The Use of Finite
Element Method and Finite Difference Method in Geophysics. (Proceedings
of Summer School, Liblice 1977.) Praha, Geofyzikální ústav ČSAV 1978,
61–79. MR0541735

[P15] K. Segeth: Finite element method. An introductory course. The Use of
Finite Element Method and Finite Difference Method in Geophysics. (Pro-
ceedings of Summer School, Liblice 1977.) Praha, Geofyzikální ústav ČSAV
1978, 95–118. MR0541737

[P16] V. Bezvoda, J. Matouš, K. Segeth: Lineární filtrace profilových měření me-
todou VDV v okolí Příbrami. Hornická Příbram ve vědě a technice. (Sborník
přednášek symposia, Příbram 1979.) Sekce užitá geofyzika. Příbram, Geo-
fyzika, n.p., 1979, 187–204.

[P17] V. Bezvoda, V. Hašek, K. Segeth: Objektivní metody zpracování geofyzikál-
ních dat v archeologii. Aplikace geofyzikálních metod v archeologii a mo-
derní metody terénního výzkumu a dokumentace. (Sborník referátů 1. ce-
lostátní konference, Petrov n. Desnou 1979.) Brno, Geofyzika, n.p., 1979,
37–40.

[P18] V. Bezvoda, J. Dvořák, K. Segeth: Poznatky z použití metody lineární fil-
trace při interpretaci geofyzikálních dat. Sborník referátů 7. celostátní kon-
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Zero points of quadratic matrix polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

V. Podsechin, G. Schernewski

Finite element modelling of flow and temperature regime in shallow lakes . . . . . 177

J. Považan, B. Riečan
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Application of Richardson Extrapolation with the Crank–Nicolson scheme for
multi-dimensional advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

xxvi



List of authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

List of participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Program of the conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

xxvii





Conference Applications of Mathematics 2013

in honor of the 70th birthday of Karel Segeth.

Jan Brandts, Sergey Korotov, Michal Kř́ıžek,
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Abstract

This paper is about 0/1-triangles, which are the simplest nontrivial examples of
0/1-polytopes: convex hulls of a subset of vertices of the unit n-cube In. We consider
the subclasses of right 0/1-triangles, and acute 0/1-triangles, which only have acute
angles. They can be explicitly counted and enumerated, also modulo the symmetries
of In.

1. Introduction

A 0/1-polytope [3] is the convex hull of a subset of the set of vertices B
n of the

unit n-cube In. Since In has 2n vertices, the number of subsets of Bn equals 2(2
n
),

a number that grows so quickly that the practical study of 0/1-polytopes is a compli-
cated matter. Therefore, it is convenient to consider two 0/1-polytopes as equivalent
if there exists an n-cube symmetry that maps one onto the other. The group Hn of
symmetries of In is called the hyperoctahedral group. It is generated by the reflec-
tions in the n hyperplanes that orthogonally intersect the coordinate axes at their
midpoints, and the transposition of labels of coordinate axes. The number of ele-
ments of Hn, its order, is n!2

n. An orbit of a 0/1-polytope under the action of Hn, or
in other words, the set of images of the polytope under each of the cube’s symmetries,
can therefore contain at most n!2n elements. Under the proposed equivalence, the
number of equivalence classes of 0/1-polytopes can, in principle, be counted using
Pólya’s Enumeration Theorem. This requires the explicit computation of the so-
called cycle index of Hn. In [2], it is described how to compute this cycle index,
but the procedure is nontrivial and does not lead to a general formula in n. Also, it
does not distinguish between 0/1-polytopes whose dimension equals n, and the ones
that are less-dimensional. This explains why only for n ≤ 6 it is known how many
equivalence classes of n-dimensional 0/1-polytopes exist.

1.1. Goal and outline of this paper

In this paper, we will fully characterize the 0/1-polytopes that are the convex
hull of three different vertices of In, the 0/1-triangles. Next to individual vertices
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and line segments, these are the simplest 0/1-polytopes. We will count the number
of 0/1-triangles in In, and also the number of elements in the disjoint subsets of right
and acute 0/1-triangles. This will be done in Section 2. In Section 3 we will count the
number of 0/1-equivalence classes of such triangles. We will also enumerate them,
by which we mean that we list from each equivalence class a unique member.

2. Counting and enumerating all 0/1-triangles in In

Let n ≥ 2. A 0/1-triangle is the convex hull of three distinct vertices of the unit
n-cube In. We will write ∆n for the set of 0/1-triangles in In. A first observation
is that no three vertices of In lie on the same line, and thus that each T ∈ ∆n is
nondegenerate. A second observation is that each T ∈ ∆n is nonobtuse, by which we
mean that all its angles are less than or equal to 90◦. This is true because the inner
product between two vectors u, v ∈ B

n, the set of 0/1-vectors of length n representing
the vertices of In, is nonnegative. Thus, any angle between two edges that meet at
the origin is nonobtuse. By symmetry, this also holds for angles located at other
vertices of In. This leads to the following proposition.

Proposition 2.1 The number |∆n| of elements of the set ∆n of 0/1-triangles in In

equals

|∆n| =
(

2n

3

)

=
1

6
2n (2n − 1) (2n − 2) . (1)

and each T ∈ ∆n is nondegenerate, and moreover nonobtuse.

We can divide the triangles in ∆n into two subsets, the subset Rn of right triangles,
and the subset An of acute triangles, which are the triangles that have three acute
angles,

∆n = An ∪ Rn and An ∩Rn = ∅,
with as immediate consequence that

|∆n| = |An|+ |Rn|. (2)

It is possible to count the number |Rn| of right triangles, and thus to count |An| as
well.

Theorem 2.2 The number |Rn| of right 0/1-triangles in In equals

|Rn| = 2n−1
(

3n − 2n+1 + 1
)

. (3)

Proof. We will first count the right triangles T ∈ Rn that have their right angle at
the origin. The other two vertices u, v ∈ B

n of such a T are nonzero and orthogonal.
If u has k < n zero entries, there are 2k − 1 different v 6= 0 such that u ⊥ v. The
number of u ∈ B

n with k zero entries is
(

n
k

)

, leading to a total of

1

2

n−1
∑

k=1

(

n

k

)

(2k − 1)
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right triangles with right angle at the origin, where the factor of a half is due to the
fact that the roles of u and v can be interchanged. As a consequence,

|Rn| = 2n · 1
2

n−1
∑

k=1

(

n

k

)

(2k − 1), (4)

because the right angle can be located at any of the 2n vertices of In. Using the
binomial formula

(x+ y)n =

n
∑

k=0

(

n

k

)

xkyn−k,

with x = 2 and y = 1, and also with x = y = 1, the expression in (4) can be easily
simplified until (3) remains. This proves the theorem. �

Corollary 2.3 The number |An| of acute 0/1-triangles in In equals

|An| =
1

6
2n

(

4n − 3n+1 + 3 · 2n − 1
)

. (5)

Proof. Substitute expressions (1) and (3) into (2) and rearrange some terms. �

The following table gives the values of |∆n|, |Rn| and |An| for small values of n. The
asymptotic behavior of |Rn| = O(n6) and |An| = O(n8) is clearly visible.

n |Rn| |An| |∆n|
2 4 0 4
3 48 8 56
4 400 160 560
5 2880 2080 4960
6 19264 22400 41664
7 123648 217728 341376
8 774400 1989120 2763520
9 4776960 17461760 22238720
10 29185024 149248000 178433024

Neither |Rn| nor |An| is mentioned in the Online Encyclopedia of Integer Sequences
(OEIS). But the scaled sequence |Rn|/2n−1 can be found under label A028243 and
has annotation essentially Stirling numbers of second kind, whereas |An|/2n has label
A000453, Stirling numbers of the second kind, S(n, 4).

3. Counting and enumerating modulo cube symmetries

In the previous section we described how to generate and count right and acute
0/1-triangles. We did not take into account 0/1-equivalence, as described in Sec-
tion 1. This will be done here. We will count the number of 0/1-equivalence classes
of right and acute 0/1-triangles, and explicitly give one representative for each equiv-
alence class.
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3.1. Matrix representation and 0/1-equivalence

Apart from the empty set, we will represent a 0/1-polytope P ⊂ In by
a 0/1-matrix P of size n × p whose columns are the p coordinate vectors in B

n

of its vertices. Since we do not allow multiple vertices, this can be done in exactly
p! different ways. If we assign to each n× p 0/1-matrix U an integer vector

ν(U) = S(v⊤n U), where v⊤n =
(

1, 2, 4, . . . , 2n−1
)

, (6)

and where S sorts the integer vector in its argument in increasing order, we see that
each matrix representation P of P has the same vector value ν(P ). Moreover, if
the 0/1 polytopes P1 and P2 are distinct subsets of In, then their vertex sets are
distinct [3], and hence for given matrix representations P1 of P1 and P2 of P2 we
have that ν(P1) 6= ν(P2). Therefore, with a slight abuse of notation, we will also
consider ν as an injective map on the set of all nonempty 0/1-polytopes into the set
consisting of all vectors up to length 2n − 1.

Let P1 be a matrix representing a 0/1-polytope P1. Then P2 is a 0/1-polytope
that is 0/1-equivalent to P1 if and only if P2 has a matrix representation P2 that can
be transformed into P1 by permuting and negating some rows of P2. A row negation
is to replace the zeros by ones, and the ones by zeros within a row. The negation of
row j corresponds to the reflection of In into the hyperplane with equation 2xj = 1,
whereas the exchange of rows i and j corresponds to the relabeling of coordinate
axes i and j.

Definition 3.1 The minimal representative within the 0/1-equivalence class E(P)
of a given 0/1-polytope P is the unique element P∗ ∈ E(P) for which ν(P∗) is
lexicographically smaller than ν(P) for all P ∈ E(P),P 6= P∗. The minimal matrix
representation P ∗ of the equivalence class E(P) is the matrix representation P ∗ for P∗

for which v⊤P ∗ is increasing.

In the following section we will see some examples of matrix representations and of
geometrical invariants under cube symmetries.

3.2. Congruence versus 0/1-equivalence

If two 0/1-polytopes P1 and P2 are 0/1-equivalent, P1 can be transformed into P2

by a cube symmetry, which is a congruence. Conversely, it is well known that
congruent 0/1-polytopes need not be 0/1-equivalent. An example, adapted from [3],
is given by the two full-dimensional 5-simplices in I5 represented by the matrices

P1 =













0 1 1 1 0 1
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 0 1













and P2 =













0 1 1 0 1 0
0 1 0 1 0 1
0 0 1 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1













.

If for j ∈ {1, 2} we write Rj for Pj with its first column removed, then R⊤
1
R1 = R⊤

2
R2

and since R2 is invertible, (R1R
−1

2
)⊤(R1R

−1

2
) = I. Thus Q = R1R

−1

2
is orthogonal,
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and we conclude that R1 = QR2 and hence P1 = QP2, proving the congruence.
To disprove 0/1-equivalence, consider the effect of cube symmetries on the vector
of row sums of a matrix. Row permutations do not alter the values, only permute
them, whereas a row negation replaces a row sum s by p− s, where p is the number
of columns. Since P2 has two row sums equal to 1, whereas P1 has only one row
sum equal to one and no row sum equal to 6 − 1 = 5, we see that P1 6∈ E(P2).
Geometrically speaking, P2 has two exterior facets, which are facets that lie in a facet
of I5, and P1 has only one. Obviously, cube symmetries preserve such exterior facets.

In spite of the above, it is known that equivalence does indeed hold for all full
dimensional 0/1-polytopes of dimension n ≤ 4. The full dimensionality cannot be
omitted, as is shown by the following counter example,

P1 =









0 0 1 1
0 1 0 1
0 1 1 0
0 0 0 0









and P2 =









0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1









.

Both matrices represent a regular tetrahedron in I4, but the tetrahedron at the left
has a zero row, and hence lies in a cube facet (basically in I3), whereas the right one
has neither a zero row nor a row with ones. Thus, they are not 0/1-equivalent. This
also shows that for 0/1-tetrahedra in In, congruence and 0/1-equivalence are not the
same. For 0/1-triangles however, they are.

Theorem 3.2 If 0/1-triangles T1 and T2 are congruent, then they are 0/1-equivalent.

Proof. Let T1, T2 ∈ ∆n be congruent. Then their edge lengths and angles are equal.
Therefore, it is possible to apply a cube symmetry S1 to T1 such that the origin is
a vertex of S1(T1), while its remaining vertices are v1, w1 ∈ B

n, and then to apply
a cube symmetry S2 to T2 such that the origin is a vertex of S2(T2) and its remaining
vertices are v2, w2 ∈ B

n, such that

‖v1‖ = ‖v2‖ =
√
p, ‖w1‖ = ‖w2‖ =

√
q, and v⊤

1
w1 = v⊤

2
w2 = r, (7)

for certain integers p, q, r. Due to (7), the 3 × n matrices P1 = (0|v1|w1) represent-
ing T1 and P2 = (0|v2|w2) representing T2, both have r rows equal to (0, 1, 1), and
consequently, p− r rows equal to (0, 1, 0) and q− r rows equal to (0, 0, 1). And since
P1 and P2 have the same rows, T1 and T2 are 0/1-equivalent. �

3.3. The minimal matrix representation for each 0/1-equivalence class

We will now formulate necessary and sufficient conditions under which a matrix
is a minimal matrix representation of an equivalence class E(T ). The necessity of the
block form of the matrix in 8 was already described in [1] in a more general context.
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Theorem 3.3 An n× 3 matrix P ∗ is a minimal matrix representation of an equiv-

alence class E(T ) of 0/1-triangles in In if and only if

P ∗ =















































0 1 1
...

...
...

0 1 1
0 1 0
...

...
...

0 1 0
0 0 1
...

...
...

0 0 1
0 0 0
...

...
...

0 0 0















































, (P ∗)⊤P ∗ =





0 0 0
0 p r
0 r q



 , 1 ≤ p ≤ q ≤ p−r+q−r ≤ n−r ≤ n.

(8)
Note that p, q and p − r + q − r are the squares of the lengths of the edges of the

triangle.

Proof. Suppose that P ∗ is a minimal matrix representation. Then the block form
given in (8) is necessary for the following reasons. Firstly, any vertex of any triangle
can be mapped onto the origin by a cube symmetry, hence the first column of P ∗

needs to be zero. Secondly, if there is a zero entry in the second column in row i and
an entry equal to one in row j with j > i, interchanging rows i and j would decrease
the second value in v⊤n P

∗ while the first value of vtnP
∗ remains zero, contradicting the

minimality. Further, if in the third column there is a zero entry in row i with i < p
and an entry equal to one in row j with i < j ≤ p, then interchanging rows i and j
would decrease the third value in vtnP while the first value of vtnP remains zero, and
the second also remains the same because in the second column, two entries equal
to one are swapped, contradicting the minimality. Finally, if in the third column
there is a zero entry in row i with i ≥ p and an entry equal to one in row j with
i < j, then interchanging rows i and j would decrease the third value in v⊤n P while
the first value of v⊤n P remains zero, and the second also remains the same because in
the second column, two entries equal to zero are swapped. This shows the necessity
of the block form in (8).

Additionally, the set of inequalities 1 ≤ p ≤ q ≤ p− r+ q− r ≤ n− r is necessary
for the following reasons. Firstly, the second column of P needs to be nonzero, hence
1 ≤ p. Secondly, p ≤ q or otherwise swapping the block with rows (0 1 0) with the
block with rows (0 0 1) followed by swapping the second and third column, would
result in a zero first column, and a second column with q < p entries equal to one,
and this would reduce the second value of v⊤n P while the first remains zero. Thirdly,
q ≤ p− r + q− r, or equivalently r ≤ p− r or otherwise negating all rows that have
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a one in the second column, followed by interchanging the first and second column,
followed by restoring the block form by interchanging the block with rows (0 1 1)
with the block with rows (0 1 0), would result in a matrix with zero first and second
column and also the third and fourth block of rows unchanged. However, there
would be p− r ones at the top of the third column instead of r, and if r > p− r, this
would reduce the third value of v⊤n P

∗ while the first and second remain unchanged,
contradicting the minimality. The next inequality, equivalent to p + q − r ≤ n, is
necessary because p + q − r is the number of nonzero rows of P ∗, which must, of
course, be bounded by n. Finally, the rightmost inequality is necessary because the
other ones do not yet guarantee that r is nonnegative.

Now we prove that the given conditions in (8) are sufficient. Firstly, since the
first entry of v⊤n P

∗ equals zero, this value cannot be reduced. Secondly, since the
triangle has no edge with length less than

√
p, also the second entry of v⊤n P

∗ cannot
be reduced. The third column of P ∗ represents one of the two remaining edges of
the triangle. The third entry of v⊤n P

∗ is minimal for the edge whose inner product
with the second column of p is maximal, because this minimizes the number of rows
equal to (0 0 1). This follows from the requirement r ≤ p− r. �

As a consequence, we can directly characterize the equivalence classes of right
triangles in In.

Corollary 3.4 An n× 3 matrix P ∗ is a minimal matrix representation of an equiv-

alence class E(T ) of right 0/1-triangles in In if and only if (8) holds with r = 0.

Proof. If (8) holds with r = 0, the matrix P ∗ in (8) obviously represents a right
triangle, and due to Theorem 3.2, this representation is minimal. Conversely, suppose
that P ∗ is a minimal representation of a right triangle. Then (8) holds due to
Theorem 3.2. We will prove that additionally, r = 0. Writing P ∗ = (0 u v) with
u, v ∈ B

n, we that either u ⊥ v or u − v ⊥ u or u − v ⊥ v. The second of these
options, u− v ⊥ u, implies that P ∗ has no rows equal to (0 1 0), or in other words,
that p = r. But due to the inequality q ≤ p − r + q − r from (8), this implies
that r = 0. Consequently, also p = r = 0, contradicting p ≥ 1. The third option
u− v ⊥ v similarly implies that P ∗ has no rows equal to (0 0 1), hence q = r, hence
the inequality p ≤ p − r + q − r from (8) implies that r = 0. Therefore q = r = 0,
contradicting q ≥ 1. The only option left is u ⊥ v, which indeed implies r = 0. �

Corollary 3.5 An n× 3 matrix P ∗ is a minimal matrix representation of an equiv-

alence class E(T ) of acute 0/1-triangles in In if and only if (8) holds with r > 0.

Proof. Follows immediately from Theorem 3.2 and Corollary 3.4. �

3.4. Counting the 0/1-equivalence classes of right and acute 0/1-triangles

In order to count the number of equivalence classes of 0/1-triangles in In, by
Theorem 3.3 we only have to count the number of triples (p, q, r) such that

1 ≤ p ≤ q ≤ p+ q − 2r ≤ n− r ≤ n. (9)
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We will do this by fixing a value for r and counting the tupels (p, q) that satisfy the
resulting equation. The following lemmas will be of use.

Lemma 3.6 Let m ≥ 1 be an integer. The number of integer tupels (a, b) satisfying

1 ≤ a ≤ b ≤ m− a (10)

equals
⌊m

2

⌋ ⌈m

2

⌉

, (11)

where ⌊·⌋ is the floor-operator and ⌈·⌉ the ceil-operator.

Proof. Only for values of a with 1 ≤ a ≤ ⌊m/2⌋, we have that a ≤ m − a. The
number of integers between such an a and m − a equals m + 1 − 2a. This leads to
a total of

⌊m/2⌋
∑

a=1

m+ 1− 2a =
⌊m

2

⌋

(m+ 1)− 2 · 1
2

⌊m

2

⌋(⌊m

2

⌋

+ 1
)

(12)

tupels (a, b) that satisfy (10). Using the relation

m =
⌈m

2

⌉

+
⌊m

2

⌋

, (13)

together with Lemma 3.10, this leads, after some simplifications, to the statement.
�

Corollary 3.7 The number of 0/1-equivalence classes of right triangles in In equals

⌊n

2

⌋ ⌈n

2

⌉

. (14)

Proof. According to Corollary 3.4, we need to count to number of tupels (p, q)
satisfying

1 ≤ p ≤ q ≤ p+ q ≤ n. (15)

Since the inequality q ≤ p+ q is always valid, it can be removed. Thus, we only need
to count the number of tupels (p, q) such that 1 ≤ p ≤ q ≤ n− p, which was done in
Lemma 3.6. �

In the next lemma we will count equivalence classes of triangles for fixed values of
r ≥ 1. It will turn out that if 3r > n, there are no solutions. Moreover, substituting
r = 0 in (16) below does not yield the result of Corollary 3.7. After its proof it is
explained why not.

Lemma 3.8 For given r ≥ 1 with 3r ≤ n, the number of tupels (p, q) satisfying (9)

equals
⌊

n− 3r + 2

2

⌋⌈

n− 3r + 2

2

⌉

. (16)
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Proof. Let r ≥ 1 be fixed. If p < 2r, there are no integers q that satisfy the third
inequality q ≤ p + q − 2r in (9). If p ≥ 2r, this inequality holds for all q and can
thus be removed. Thus, we only need to count the tupels (p, q) for which

2r ≤ p ≤ q ≤ n+ r − p. (17)

For such tupels to exist, we need that 2r ≤ n+ r−p, but since p ≥ 2r this translates
into 2r ≤ n + r − 2r. This explains the requirement 3r ≤ n in the statement of
this lemma. To count the tupels, subtract 2r− 1 from each term in (17), and define
a = p− (2r − 1), b = q − (2r − 1), and m = n− 3r + 2, then

1 ≤ a ≤ b ≤ n + r − a− 2(2r − 1) = n− 3r + 2− a = m− a. (18)

Applying Lemma 3.6 gives the number of tupels (a, b) satisfying these inequalities in
terms of m, and substituting back m = n− 3r + 2 proves the statement. �

Remark 3.9 Choosing r = 0 in (16) does not give (14). This is because setting
r = 0 in (17) does not imply 1 ≤ p, as is required in Theorem 3.3, whereas for r ≥ 1,
it does.

We will now count the number of equivalence classes of acute triangles. First another
lemma.

Lemma 3.10 For nonnegative integers k we have that (kmod 2)2 = kmod 2, and
hence

⌊

k

2

⌋⌈

k

2

⌉

=

(

k − kmod2

2

)(

k + kmod 2

2

)

=
1

4
(k2 − kmod 2). (19)

Moreover,

n
∑

k=1

kmod 2 =

⌊

n+ 1

2

⌋

, and

⌊

n− ⌊n
3
⌋

2

⌋

=

⌊

n + 1

3

⌋

. (20)

Proof. Elementary, and thus left to the reader. �

Theorem 3.11 The number of 0/1-equivalence classes of acute triangles in In equals

⌊

2n3 + 3n2 − 6n+ 9

72

⌋

. (21)

Proof. We need to sum the expression in (16) over all r ≥ 1 satisfying 3r ≤ n.
Now, since (n− 3r + 2)mod 2 = (n− r)mod 2, we find using Lemma 3.10 that

⌊n

3
⌋

∑

r=1

⌊

n− 3r + 2

2

⌋⌈

n− 3r + 2

2

⌉

=
1

4

⌊n

3
⌋

∑

r=1

(n− 3r + 2)2 − 1

4

⌊n

3
⌋

∑

r=1

(n− r)mod2. (22)
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The first sum in the right-hand side of (22) can be evaluated using standard expres-
sions for sums of squares as

⌊n

3
⌋

∑

r=1

(n− 3r + 2)2 =
⌊n

3

⌋

(n+ 2)
(

n− 1− 3
⌊n

3

⌋)

+
3

2

⌊n

3

⌋(⌊n

3

⌋

+ 1
)(

2
⌊n

3

⌋

+ 1
)

.

(23)
Using Lemma 3.10 again, the second sum in the right-hand side of (22) evaluates to

⌊n

3
⌋

∑

r=1

(n− r)mod 2 =

n−1
∑

r=1

rmod 2−
n−⌊n

3
⌋−1

∑

r=1

rmod 2 =
⌊n

2

⌋

−
⌊

n+ 1

3

⌋

. (24)

Combining (22), (23) and (24), the number of equivalence classes of acute
0/1-triangles equals

1

4

(

⌊n

3

⌋

(n+2)
(

n−1−3
⌊n

3

⌋)

+
3

2

⌊n

3

⌋ (⌊n

3

⌋

+1
)(

2
⌊n

3

⌋

+1
)

−
⌊n

2

⌋

+

⌊

n+1

3

⌋)

.

(25)
To verify that this expression equals (21) is a tedious task, but can be done as
follows. First, we substitute n = 6k + ℓ with ℓ ∈ {0, . . . , 5} into (21), which after
simplifications results in

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k +

⌊

1

36
ℓ3 +

1

24
ℓ2 − 1

12
ℓ+

1

8

⌋

, (26)

where we have used that 2ℓ + 1 and ℓ2 + ℓ − 1 = ℓ(ℓ + 1) − 1 are both odd, which
implies that the sum of the first three terms in (26) is indeed an integer for all k
and ℓ.

Next, substitute n = 6k + ℓ with ℓ ∈ {0, 1, 2} in (25), and note that it simplifies
to

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k, (27)

which equals the expression in (26) because for ℓ ∈ {0, 1, 2} the floor results in zero.
Finally, set n = 6k + ℓ with ℓ ∈ {3, 4, 5} in (25). After simplification there remains

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k +
1

4

(

ℓ2 − 2ℓ+ 1−
⌊

ℓ

2

⌋

+

⌊

ℓ+ 1

3

⌋)

. (28)

Comparing (26) with (28), it can be easily verified that for ℓ ∈ {3, 4, 5},

1

4

(

ℓ2 − 2ℓ+ 1−
⌊

ℓ

2

⌋

+

⌊

ℓ+ 1

3

⌋)

=

⌊

1

36
ℓ3 +

1

24
ℓ2 − 1

12
ℓ+

1

8

⌋

. (29)

And this proves the theorem. �
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Below are listed the numbers rn and an of 0/1-equivalence classes of right and acute
0/1-triangles and their sum dn for small values of n.

n 2 3 4 5 6 7 8 9 10

rn 1 2 4 6 9 12 16 20 25
an 0 1 2 4 7 11 16 23 31
dn 1 3 6 10 16 23 32 43 56

In the OEIS, the sequence rn has label A002620, sequence an has label A181120,
and dn has label A034198. Only the latter has as description “number of distinct
triangles on vertices of n-dimensional cube”, the other two are not associated with
counting triangles in In.

On a personal note

I met Karel Segeth for the first time in the beginning of October 1997, when
I was 29 years old. Karel was director of the Mathematical Institute of the Academy
of Sciences of the Czech Republic, and I had just arrived to take up a one year
visiting position at his Institute. He invited me to his director’s office for a cup of
tea, and to welcome me. I recall being impressed and a bit nervous, and listened to
what Professor Segeth had to say, in his typical (although at that time, of course,
I did not know this) calm and amiable tone of voice. He seemed to be the type
of person taking his responsibilities seriously; the greater was my surprise when he
good-humouredly laughed at my humble wish to take up a Czech language course
now that I had arrived in Prague, and actually rather cheekily added: “Pardon me,
but I’m afraid you will never learn to speak Czech!”. Notwithstanding cheekiness, he
immediately organized for me to be enroled in a Czech language course provided by
the Academy of Sciences, and until this day I still get goose bumps when I recall the
teacher, a strict lady who asked me questions when, and only when, I had completely
lost track of things. It was the beginning of my personal quest to prove Karel wrong,
a quest that still goes on today, and which, of course, I can never complete. It was
also the beginning of a wonderful year in Prague. When I left the institute, Karel
spoke the words “Please, come again!”.

And so I did. In the almost fifteen years since my first stay in Prague, I have
visited the Institute many times a year. Instead of -or maybe better, next to- being
an impressive director, Karel became a fellow mathematician, a trustworthy source
of Czech culture and history, a fixed point in the audience of my mathematical
presentations, and a good companion in not always politically correct jokes and
a celebrational glass of spirit. And each time when I left, he spoke the words “Please,
come again!”. What choice do I have, than to follow his advice?

I wish Karel all the best, and hope to see him regularly at the Institute; at the
seminar, the corridor, at Michal’s office, the printer room, and to enjoy his typical
humor and wisdom for many years to come. Happy seventieth birthday!

Jan Brandts
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Doleǰskova 5, CZ-182 00 Praha 8, Czech Republic
novotny@it.cas.cz

4 Institute of Mathematics, Academy of Sciences of the Czech Republic
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Abstract

We present analytical solution of the Stokes problem in rotationally symmetric
domains. This is then used to find the asymptotic behaviour of the solution in the
vicinity of corners, also for Navier-Stokes equations. We apply this to construct very
precise numerical finite element solution.

1. Introduction

In this paper we analyze the singularities arising in rotationally symmetric tubes
with nonsmooth walls, e.g. with forward and/or backward steps, or jumps in dia-
meter. The goal of the paper is to contribute to the asymptotic behaviour of the
Stokes flow near ‘corners’ of the rotationally symmetric tubes. We follow up the
methodology used in the paper [5] for the Stokes flow in 2D domains.

We start with the general stream function-vorticity formulation. Then by means
of the cylindrical coordinates together with rotational symmetry we derive equations
for vorticity and stream function in z, ρ geometry (z axial, ρ radial coordinate) as
e.g. in a domain in Fig. 1, or Fig. 2.

Then we perform the transformation to polar coordinates r, ϑ, where the point P
in Fig. 1 is the pole. So we get the equations for both stream function and vorticity
in polar coordinates r, ϑ. Continuing as in [5] we derive the analytical solution for
the singularity near the corner P .

Let us note that the asymptotic behaviour applies also to Navier-Stokes equations.
The results will be applied to the flow in a tube with forward and/or backward steps.
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A

P S

B

Figure 1: Example of the solution domain in cylindrical z, ρ geometry.

Figure 2: The hydrostatic cell (rotationally symmetric).

2. Stream function-vorticity formulation of the Stokes flow in cylindrical

geometry

We start with the general 3D stationary Stokes flow in stream function-vorticity
formulation, see e.g. Peyret, Taylor [8],

Ω = ∇×V, (1)

−ν∇2Ω =
1

ρ
∇× f , (2)

V = ∇×Ψ, (3)

∇2Ψ +Ω = 0, (4)

where V is the vector of velocity, Ω is the vector of vorticity, Ψ is the stream function
vector, ν the kinematic viscosity, ρ is the density, and f is the external force.

In the paper we study the Stokes flow in the rotationally symmetric tubes, like
e.g. the hydrostatic cell, see Fig. 2, or tube on Fig. 1 with line AB as the axis of
symmetry.

We first transform the equations (1)–(4) to cylindrical coordinates z, ρ, ϕ and

use the rotational symmetry

(

∂
∂ϕ
(·) = 0

)

. In what follows we use the following

formulas (see Batchelor [1])
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∇2F =

(

∇2Fz,∇2Fρ −
Fρ

ρ2
,∇2Fϕ − Fϕ

ρ2

)

, (5)

∇× F =

(

1

ρ

∂

∂ρ
(ρFϕ) ,−

∂Fϕ

∂z
,
∂Fρ

∂z
− ∂Fz

∂ρ

)

, (6)

∇2g =
∂2g

∂z2
+

1

ρ

∂

∂ρ

(

ρ
∂g

∂ρ

)

. (7)

Denoting
V = (Vz, Vρ, 0) ,

we get, by (1) and (6),

Ω =

(

0, 0,
∂Vρ
∂z

− ∂Vz
∂ρ

)

.

Now we denote the scalar vorticity

ω =
∂Vρ
∂z

− ∂Vz
∂ρ

.

Similarly we denote the scalar stream function ψ = ψϕ and, by (3) and (6), we get

V =

(

1

ρ

∂

∂ρ
(ρψ) ,−∂ψ

∂z
, 0

)

,

so that the velocity components are

Vz =
∂ψ

∂ρ
+

1

ρ
ψ, (8)

Vρ = −∂ψ
∂z
.

By (4) and (5),

ω = −
(

∇2ψ − ψ

ρ2

)

,

so that, by (7)

−ω =
∂2ψ

∂z2
+
∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
− ψ

ρ2
. (9)

In the paper we assume the external forces f = 0, so that, by (2) and (5),

ν

(

∇2ω − ω

ρ2

)

= 0,

which, together with (7) gives

ν

(

∂2ω

∂z2
+
∂2ω

∂ρ2
+

1

ρ

∂ω

∂ρ
− ω

ρ2

)

= 0. (10)
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The equations (9) and (10) together with (8) describe the flow in a rotationally
symmetric domain. If we add appropriate boundary conditions, like e.g. prescribed
velocity at the inflow, zero velocity on the wall, symmetry condition on the axis
of symmetry, and ‘do nothing’ condition at the outflow, then the flow is uniquely
determined.

In the paper we are interested in the behaviour of the solution near the singular
points, like e.g. the points P,Q in Fig. 1. This will be the subject of the next section.

3. Stream function and vorticity near the singular points

In order to investigate the behaviour of the flow in the vicinity of the singular
point P , we transform the equations (9) and (10) to polar coordinates r, ϑ with
pole in the point P = [z0, ρ0]. Without loss of generality we take z0 = 0. So the
transformation is

z = r cos ϑ,

ρ = ρ0 + r sin ϑ.
(11)

The stream function ψ (z, ρ) after transformation will be denoted, for a moment,
as ψ∗ (r, ϑ) i.e.

ψ∗ (r, ϑ) = ψ (z, ρ) = ψ (r cosϑ, ρ0 + r sinϑ) .

Then, using the chain rule, equation (9) gives the equality

∂2ψ∗

∂r2
+

1

r

∂ψ∗

∂r
+

1

r2
∂2ψ∗

∂ϑ2
+

1

ρ

(

∂ψ∗

∂r
+

1

r

∂ψ∗

∂ϑ

)

− ψ∗

ρ2
= −ω∗. (12)

As we are interested in the behaviour of the solution in a small neighborhood of the
point P , we assume

r ≪ ρ. (13)

Then we may neglect the terms with the coefficients 1

ρ
and 1

ρ2
in (12) and we get the

equation for the stream function in polar coordinates (stars deleted)

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂ϑ2
= −ω. (14)

The same transformation (11) is done for the vorticity ω in (10)

ω∗ (r, ϑ) = ω (z, ρ) = ω (r cosϑ, ρ0 + r sinϑ) .

Again, using the chain rule, the equation (10) gives the equality (positive constant ν
is omitted)

∂2ω∗

∂r2
+

1

r

∂ω∗

∂r
+

1

r2
∂2ω∗

∂ϑ2
+

1

ρ

(

∂ω∗

∂r
+

1

r

∂ω∗

∂ϑ

)

− ω∗

ρ2
= 0.
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Due to assumption (13) we get the equation for the vorticity in polar coordinates
(stars deleted)

∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2
∂2ω

∂ϑ2
= 0. (15)

Let us note that the velocity components ur, uϑ are related to the stream function
as follows

ur =
1

r

∂ψ

∂ϑ
, uϑ = −∂ψ

∂r
. (16)

If we compare equations (14), resp. (15) that apply to rotationally symmetric
flow, with the equations (4), resp. (5) in [5] that apply to plain flow, we see that
they are identical. In other words, we proved the following assertion.

Assertion 1. Under the assumption (13), the asymptotic behaviour of the Stokes
flow near the corners of the rotationally symmetric tube is the same as that of the
Stokes flow in a 2D channel.

4. Analytical solution for singularities

In the paper [5] we used the separation of variables

ψ (r, ϑ) = P (r)F (ϑ) , (17)

ω (r, ϑ) = R (r)G (ϑ) (18)

in order to find the singular part of the solution of the equations (14) and (15) in the
neighborhood of the point P (see Fig. 1). There it was done for the channel flow.
Now, due to the identical equations, cf. Assertion 1, we may proceed in the same
way also in the case of rotationally symmetric flow.

Namely, we consider fluid flow in the rotationally symmetric region with boundary
corner of nonconvex internal angle α, cf. Fig. 1. We assume a rigid boundary and
nonslip boundary conditions, so that the boundary conditions for the stream function
are

ψ (r, 0) = 0, ψ (r, α) = 0, (19)

∂ψ

∂ϑ
(r, 0) = 0,

∂ψ

∂ϑ
(r, α) = 0. (20)

As proved in [5], the singular part of the stream function ψ is

ψ (r, ϑ) = rγ+1F (ϑ) , (21)

where γ is the solution of the algebraic equation

γ2 sin2 α− α sin2 γ = 0. (22)

In the case of domains in Figs. 1 and 2 the angle is

α =
3

2
π. (23)
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So that, by (22),
γ = 0.5444837, (24)

and we get for the stream function the asymptotic behaviour near the angle 3π
2
:

ψ (r, ϑ) = r1.54448 · F (ϑ) , (25)

where the function F does not depend on r. Consequently, for the velocity compo-
nents, by (16) we have the asymptotics

ur = rγ F1 (ϑ) = r0.54448 F1 (ϑ) ,

uϑ = rγ F2 (ϑ) = r0.54448 F2 (ϑ) ,
(26)

where the functions F1 (ϑ) , F2 (ϑ) are independent of r.
For pressure, we derived in [5] the asymptotic behaviour

p ≈ rγ−1Φp (ϑ) ≈ r−0.45552Φp (ϑ) , (27)

where the function Φp (ϑ) is independent of r.
Let us note that for 2D channel flow, the same asymptotics were also found by

a different technique in Kondratiev [6] and in Ladeveze and Peyret [7]. For rota-
tionally symmetric flow the technique based on Kondratiev was used in [2]. Further,
we note that the asymptotics (26) and (27) apply also to the Navier-Stokes equations,
see e.g. [2].

5. Application to finite element solution of Navier-Stokes equations

In [4] and [5] we described the way how to make use of the asymptotics of the
solution near the singular points. Together with the a priori error estimates we
suggested and applied the algorithm for designing the finite element mesh in the
neighbourhood of the singular point. Due to the Assertion 1, the results obtained
in [4] may be applied to axisymmetric flows, using the 2D domain as a cross section
of the axisymmetric tube.

For evaluating the achieved accuracy of the approximate solution, we use the
a posteriori error estimator, see e.g. [3].

6. Numerical results

We study flow in the rotationally symmetric domain of the hydrostatic cell from
Fig. 2. Similar results were obtained for a two-dimensional flow problem in [4].
Figure 3 shows the shape of the singularity in pressure solution near the bottom
corner of the hydrostatic cell. In Fig. 4, we compare the asymptotic behaviour of
pressure near the bottom corner of the cell obtained by formula (27) with the solution
in the horizontal cut obtained by FEM. Let us note that the finite element mesh was
not designed by our algorithm here, and we used a simple local refinement offered
by the program GMSH. A more precise FEM solution would need a finer mesh.
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Figure 3: Singularity of pressure in hydrostatic cell.
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Figure 4: Pressure near the bottom corner: asymptotic versus FEM solution.

7. Conclusion

In the paper, we are interested in Stokes problem with singularities caused by
nonconvex corners in rotationally symmetric domains. We proved that the asymp-
totic behaviour of the Stokes flow near the corners of the rotationally symmetric tube
is the same as that of the Stokes flow in a 2D channel. For the Stokes flow we find
analytically the principal part of the asymptotics of the solution in the vicinity of
corners. This result may be used on one hand to construct the finite element mesh
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adjusted to singularity. This mesh is then used to find a very precise solution to
Stokes but also Navier-Stokes equations. On the other hand, the analytical solution
of the Stokes flow near corners may be used to test other methods.
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équations de Navier-Stokes: écoulement dans un canal avec variation brusque de
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Abstract

In this paper, a rigorous computational method to enclose eigenpairs of complex
interval matrices is proposed. Each eigenpair x = (λ, v) is found by solving a non-
linear equation of the form f(x) = 0 via a contraction argument. The set-up of the
method relies on the notion of radii polynomials, which provide an efficient mean of
determining a domain on which the contraction mapping theorem is applicable.

1. Introduction

Computing eigenvalues and eigenvectors of matrices is a central problem in many
fields of applied sciences involving mathematical modelling. When applied to real-
life phenomena, models need to consider the occurrence of diverse errors in the data,
due for instance to inaccuracy of measurements or noise effects. Such uncertainty in
the data can be represented by intervals. In the context of studying a matrix with
uncertain entries, interval matrices can be considered. Our goal here is to develop
a rigorous computational method to enclose eigenpairs of complex interval matrices.

Before proceeding further, note that bounds for eigendecompositions of standard
(non interval) matrices are abundant, ranging from classical perturbation theory
like Bauer-Fike residual and condition number based theorems [4], via Kato-Temple
bounds [5], to Rayleigh-Ritz bounds [6, 7, 8, 9], to bounds coming from Newton-
Kantorovich type arguments [1, 2], to pseudospectral bounds, and so on. Many such
results can, for instance, lead to bounds on the nearest eigenpair to a given approx-
imation. Also, while the problem of computing rigorous bounds for the eigenvalue
set of interval matrices is well studied, see [10, 11] and the references therein, a not
so large literature has been produced regarding the simultaneous enclosure of the
eigenvalues and eigenvectors of interval matrices. In this direction we refer to [1, 12],
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where different techniques have been developed to enclose simple eigenvalues and
corresponding eigenvectors, while for double or nearly double eigenvalues a method
has been introduced in [13]. For the rigorous enclosure of multiple or nearly multiple
eigenvalues of complex matrices, a contribution has been made by S. Rump in [3, 14].

In this paper, we propose the new idea of enclosing rigorously the eigenpairs
of complex interval matrices by using the notion of the radii polynomials, which
provide a computationally efficient way of determining a domain on which the con-
traction mapping theorem is applicable. The radii polynomials approach, which is
similar to the approaches of Newton-Kantorovich and the Krawczyk operator, aims
at demonstrating existence and local uniqueness of solutions of nonlinear equations.
The Newton-Kantorovich approach fixes a priori the radius r of a ball B(r) around
a numerically computed eigenpair and attempt to demonstrate the existence of a con-
traction on B(r). Similarly, the Krawczyk operator approach consists of applying
directly the operator to interval vectors (in the form of small neighbourhoods around
a numerical approximation) and then attempt to verify a posteriori the hypotheses of
a contraction mapping argument [15, 16]. On the other hand, the radii polynomials
are a priori conditions that are derived analytically, and once they are theoretically
constructed, they are used to solve for the sets (also in the form of small neighbour-
hoods of a numerical solution) on which a Newton-like operator is a contraction. The
radii polynomials were originally introduced in [17] to compute equilibria of PDEs
with the goal of minimizing the extra computational cost required to prove existence
of solutions of infinite dimensional PDEs [18].

The paper is organized as follows. In Section 2, the method is introduced to
enclose rigorously eigenpairs of non interval matrices and in Section 3 it is generalized
to the case of interval matrices. In Section 4, we present applications and compare
our method to the method of [14] and to a method based on the Krawczyk operator.

2. The computational method

We fix some notation. We denote by ICn×n the set of complex matrices with
interval entries, A ∈ Cn×n an n×n complex matrix and A ∈ ICn×n an n×n interval
complex matrix, meaning that any entry of A is a complex interval of the form

Ai,j = [Re(Âi,j)± rad(1)
i,j ] + ı[Im(Âi,j)± rad(2)

i,j ], rad
(1)
i,j , rad

(2)
i,j ∈ R+ ,

where Â ∈ Cn×n is called the center of A while rad
(1)
i,j , rad

(2)
i,j are called the radii of

the real and imaginary part of Ai,j, resp. We denote A ∈ A, if Ai,j ∈ Ai,j for any
1 ≤ i, j ≤ n. Bold face letters will always denote interval quantities. Moreover,

• | · | is the complex absolute value and, in case of matrices M ∈ Cn×m, it acts
component-wise, that is |M |i,j = |Mi,j|;

• given two real matrices M , N , we write M � N if and only if Mi,j ≤ Ni,j for
all i, j. The same notation holds for ≺, � and �;
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• In denotes the n × n dimensional identity matrix, 1n is the column vector of
length n with all the entries equal to 1;

• given any matrix M ∈ Cn×m, the object (M)k̂ stands for the n×(m−1) matrix
obtained by deleting the k-th column of M .

Given A ∈ ICn×n, we aim to enclose eigenpairs of any A ∈ A. To simplify
the exposition, we first present the method in the context of non interval matrices
A ∈ Cn×n. Minor modifications are needed for the extension to the interval case.

Suppose that an approximate eigenpair of A has been computed, that is (λ̄, v̄)
such that Av̄ ≈ λ̄v̄ and let f(x) be the function f : Cn → Cn that maps a point
x = (λ, v1, v2, . . . , vk−1, vk+1, . . . , vn) to

f(x) = A


v1

.

.

.
v̄k

.

.

.
vn

− λ


v1

.

.

.
v̄k

.

.

.
vn

 , (1)

where v̄k is the largest component in absolute value of v̄. Fixing vk = v̄k ensures
that the solution is isolated. Note that the more standard approach of fixing ‖v‖ = 1
will fail to provide isolation if v is complex. Indeed, given an eigenpair (λ, v) ∈ Cn+1

where v is complex, then for any θ, (λ, eiθv) is also an eigenpair and ‖eiθv‖ = 1.
By definition, a solution x of f(x) = 0 corresponds to an eigenpair (λ, v) of A

with the eigenvalue λ given by the first component of x and the eigenvector v =
(v1, . . . , vk−1, v̄k, vk+1, . . . , vn). We then aim at proving existence of zeros of f(x)
together with rigorous bounds. Denoting x̄ = (λ̄, v̄1, v̄2, . . . , v̄k−1, v̄k+1, . . . , v̄n) and
Df(x̄) the Jacobian matrix of f at x̄, one has that

Df(x̄) =

−


v̄1

.

.

.
v̄k

.

.

.
v̄n

 (A− λ̄In)k̂

 . (2)

We find zeros of f by introducing a fixed point operator T . Endow Cn with the norm
‖x‖∞ = maxi=1,...,n{|xi|}. Consider R ≈ Df(x̄)−1 an invertible matrix. Define

T : Cn → Cn : x 7→ T (x) = x−Rf(x) (3)

so that fixed points of T are in bijection with zeros of f . In practice, the matrix R
is computed numerically in MATLAB. Note that getting a good approximate inverse
is fundamental for our method to provide sharp bounds. Indeed, as one shall see
shortly, the better the approximate inverse R is, the smaller the bound Z(1) in (4)
will be. Since fixed points of T correspond to zeros of f(x), the idea is to construct
a small set B ⊂ Cn such that T : B → B is a contraction, and then to apply the
contraction mapping theorem to conclude about the existence of a unique fixed point
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of T in B. Note that x̄ is an approximate zero of f and the operator T has been
defined as a Newton-like operator around the point x̄, thus it is advantageous to test
the contractibility of T on neighbourhoods of x̄ in Cn. More precisely, denote by
B(r) = {x ∈ Cn, ‖x‖∞ ≤ r} the closed ball of radius r around the origin and let
Bx̄(r) = x̄ + B(r) be the ball with the same radius and centered at x̄. Treating r
as a variable, we choose the balls Bx̄(r) as the candidate sets where to check if T is
a contraction. The next result provides a recipe to determine the radius r.

Theorem 2.1. Consider x̄ ∈ Cn and R a real n×n invertible matrix. Consider the
nonlinear problem (1) and bounds Y, Z(1), Z(2) ∈ Rn such that

|Rf(x̄)| � Y, |In −R ·Df(x̄)|1n � Z(1), 2|R|(1n)k̂ � Z(2). (4)

Define the radii polynomials p1(r), p2(r), . . . , pn(r) by

pi(r) = Z
(2)
i r2 + (Z

(1)
i − 1)r + Yi, (5)

and define I = ∩ni=1{r > 0 : pi(r) < 0}. If I 6= ∅, then for any r ∈ I, there exists
a unique x̂ ∈ Bx̄(r) such that f(x̂) = 0.

Proof. Consider r ∈ I 6= ∅. Recalling (3), consider T (x) = x−Rf(x). Then

sup
b,c∈B(r)

|DT (x̄+ b)c| = sup
b,c∈B(r)

|(In −R ·Df(x̄))c+R(Df(x̄)−Df(x̄+ b))c|

� sup
b,c∈B(r)

|(In −R ·Df(x̄))c|+ |R(Df(x̄)−Df(x̄+ b))c|

� Z(1)r + Z(2)r2.

In the last inequality, we used that for any b = (bλ, b1, . . . , bk−1, bk, . . . , bn) ∈ B(r)

(Df(x̄)−Df(x̄+ b)) =




b1

.

.

.
bk−1

0
bk+1

.

.

.
bn

 (bλIn)k̂

 .

Note that the k-th row of the above matrix is null. Since |bi| ≤ r, we have that
|(Df(x̄)−Df(x̄+b))c|�2r2(1n)k̂ and therefore, supb,c∈B(r) |R[(Df(x̄)−Df(x̄+b))c]| �
2r2|R|(1n)k̂ = Z(2)r2.

Letting Z(r) := Z(1)r + Z(2)r2, we get that supb,c∈B(r) |DT (x̄+ b)c| � Z(r). The
Mean Value Theorem applied component-wise to T implies that for any x, y ∈ Bx̄(r)
and for any i = 1, . . . , n, Ti(x)−Ti(y) = DTi(z)(x− y), for some z ∈ {tx+ (1− t)y :
t ∈ [0, 1]} ⊂ Bx̄(r). Then,

|Ti(x)− Ti(y)| =
∣∣∣∣DTi(z)

r(x− y)

‖x− y‖∞

∣∣∣∣ 1

r
‖x− y‖∞ ≤

Zi(r)

r
‖x− y‖∞ ≤ Zi(r). (6)
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Let x ∈ Bx̄(r) and y = x̄ in (6), and using that T (x̄)− x̄ = −Rf(x̄), one has that

|Ti(x)− x̄i| ≤ |Ti(x)− Ti(x̄)|+ |Ti(x̄)− x̄i| ≤ Zi(r) + Yi = Z
(2)
i r2 + Z

(1)
i r + Yi < r

by the hypothesis that pi(r) < 0, which follows from the fact that r ∈ I. That shows
that T (Bx̄(r)) ⊆ Bx̄(r). From (6), it follows that

‖T (x)− T (y)‖∞ = max
i
{|Ti(x)− Ti(y)|} ≤ ‖Z(r)‖∞

r
‖x− y‖∞.

Since Zi(r) ≤ Zi(r)+Yi < r for any i = 1, . . . , n, it follows that ‖Z(r)‖∞< r. Hence,

T is a contraction with contraction constant ‖Z(r)‖∞
r

< 1. From the contraction map-
ping theorem, there exists a unique x̂ ∈ Bx̄(r) such that T (x̂) = x̂. By invertibility
of R, there exists a unique x̂ ∈ Bx̄(r) such that f(x̂) = 0.

In summary, given an approximate eigenpair (λ̄, v̄), the method consists of com-
puting rigorously the bounds Y, Z(1), Z(2) given in (4), and then to check whether
there exists an interval I where all the polynomials pi(r) are negative. If I 6= ∅ we se-
lect r = inf I and we conclude that f = 0 has a unique solution within the ball Bx̄(r).
In practice, we get the existence of an eigenpair (λ, v) of A, with |λ − λ̄| ≤ r,
|vj − v̄j| ≤ r, for j 6= k and vk = v̄k. To prove the existence of another eigenpair
of A, it is necessary to provide a different numerical approximate solution (λ̄, v̄),
different from the previous one, and to repeat the computation.

3. Extension to the interval case

Besides few modifications necessary to deal with interval quantities, the procedure
to compute rigorously bounds for the eigenpairs of an interval matrix A ∈ ICn×n

is basically the same as for the scalar case. However, a fundamental difference is
that all the computations are done using interval arithmetic [10], in which any of the
basic operations ◦ ∈ {+,−, ·, /} is extended to the interval case in order to satisfy
the general assumption

∀P ∈ P ∀Q ∈ Q, P ◦Q ∈ P ◦Q . (7)

Given an interval complex valued matrix A, we now address the problem wether
or not we can rigorously enclose the eigenpairs of any A ∈ A. Recall that Â is the cen-
ter of the interval matrix A. We first compute (λ̄, v̄) an approximate eigenpair of Â
and, as before, define x̄ = (λ̄, v̄1, v̄2, . . . , v̄k−1, v̄k+1, . . . , v̄n), where the missing com-
ponent v̄k is chosen so that |v̄k| = maxj{|v̄j|}. Then, replacing the scalar matrix A
in (1) by the interval matrix A, the function f(x) and the Jacobian matrix Df(x̄)
defined in (1) and (2) are replaced respectively by f : Cn → ICn and by an interval
matrix Df(x̄) that represents a linear operator from Cn to ICn. We choose R to be

a numerical inverse of D̂f(x̄), the center of Df(x̄), and we proceed to the definition
of the operator T (x) = x − Rf(x) and to the bounds Y, Z(1), Z(2), as done before
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with the boldface quantities in place of the previous one. Clearly some quantities on
the left hand side of relations (4) are now intervals, thus we define component-wise
Y, Z(1), Z(2) as the supremum over the intervals involved, yielding uniform bounds

|Rf(x̄)| � Y, |In −R ·Df(x̄)|1n � Z(1), 2|R|(1n)k̂ � Z(2).

As in Theorem 2.1, define the radii polynomials by pi(r) = Z
(2)
i r2+(Z

(1)
i −1)r+Yi,

for i = 1, . . . , n. If r ∈ I = ∩ni=1{r > 0 : pi(r) < 0}, then for all A ∈ A, there exists
a unique (λ, v) ∈ Bx̄(r) such that |λ− λ̄| ≤ r, |vj − v̄j| ≤ r, vk = v̄k, and Av = λv.
In other words, r is a uniform bound in A for the existence of an eigenpair of any

A ∈ A. Indeed, having fixed (λ̄, v̄) and R ≈
(
D̂f(x̄)

)−1
, for any A ∈ A define fA(x)

and DfA(x̄) as in (1) and (2), and the fixed point operator TA(x) = x − RfA(x).
The fundamental inclusion (7) implies that fA(x) ∈ f(x), DfA(x̄) ∈ Df(x̄) and
TA(x) ∈ T (x), for any A ∈ A and x ∈ Cn. Thus, as A varies in A, the bounds (4),
with TA in place of T , are satisfied for the same Y, Z(1), Z(2), r proving the existence
of a fixed point in Bx̄(r) for any TA and consequently an eigenpair for any A ∈ A.

4. Results

In this section we report some computational results. All the computations have
been done in MATLAB supported by the package INTLAB [19] where the interval
arithmetic routines have been implemented. The approximate eigenpairs (λ̄, v̄) of Â
have been computed running the standard eig.m function in MATLAB. In order to
avoid rounding error and to obtain rigorous results, we emphasize that the computa-
tional algorithm treats any matrix as an interval matrix. Thus, even if one wishes to
deal with a scalar matrix A, the method first constructs a (narrow) interval matrix
around A and perform all the computation with interval arithmetics.

Example 1. Consider the interval matrix A centered at

Â =

 −10.55360193 5.33379647 −5.24740415
0.31403414 2.33062549 −3.32865541
−7.49045333 5.01386821 −5.44369022


with radius rad = 9.66146973 · 10−7, meaning that each entry A(i, j) consists of the
interval [Â(i, j)− rad, Â(i, j) + rad]. Using the method of Section 2, it results that
any A ∈ A admits three eigenpairs (λi, vi), i = 1, 2, 3 each one lying in the ball of
radius ri around the approximate values (λ̄i, v̄i) given in Table 1.

We remark that in the general situation the genuine solution (λ, v) of the eigen-
problem is proved to exist in a complex neighborhood of the approximate solu-
tion (λ̄, v̄). Therefore, even if one or both λ̄ and v̄ are real vectors, the same cannot be
concluded for λ or v. However, if the matrix A and the approximate solution λ̄ and v̄
are real and the computation is successful, then the genuine solution so obtained by
solving the radii polynomials is also real. Indeed, suppose the contrary, that is the
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i = 1 i = 2 i = 3

ri 2.7747640834393 · 10−6 3.5677963538014 · 10−5 3.6494066386385 · 10−5

λ̄i −13.9620493680589 −9.3632556453596 · 10−14 0.2953827013923

v̄i

 −0.77788012985175
−0.11136179959087
−0.61846669528252

  0.12133203779007
0.80769996168880
0.57697427021802

  0.15662675418092
0.83598562894630
0.52592403260356


Table 1: Rigorous enclosure of the eigenpairs of A.

exact solution λ and v are complex. Since A is real, the complex conjugate couple
(C(λ), C(v))) is also a solution of the eigenproblem, AC(v) = C(λ)C(v). But both the
solutions (λ, v) and (C(λ), C(v))) belong to the same ball in Cn around x̄ and this
violates the uniqueness result stated in Theorem 2.1. The same argument extends
in the case of interval matrices.

Example 2: matrices with interval entries of large radius. In this
example, we rigorously enclose all eigenpairs of an interval matrix A constructed
as follows: consider the complex number λ0 = 0 and λj = ei 2π

5
j, j = 1, . . . , 5 and

define D as the diagonal matrix with entries λi, i = 0, . . . , 5. Let Â = XDX−1, for
a random matrix X with values in the complex square [−1, 1] + i[−1, 1] and finally
let A be the interval complex matrix centered at Â with component-wise radius rad
both in the real and imaginary part. For different values of rad we compute the enclo-
sure of the eigenvalues of A. Consider λ̄i the approximate eigenvalues of Â given by
λ̄0 = 0, λ̄1 = 0.30901+0.95105i, λ̄2 = −0.80901+0.58778i, λ̄3 = −0.80901−0.58778i,
λ̄4 = 0.30901−0.95105i and λ̄5 = 1. Denote by ri, i = 0, . . . 5 the radius of the ball in
the complex plane centered at λ̄i inside which, for any A ∈ A, a unique eigenvalues
of A has been proved to exist. The results are presented in Table 2. See also Figure 1
for the enclosure of the six eigenvalues of any A ∈ A for rad = 1.3 · 10−3.

We see in Table 2 that for values of rad ≈ 10−3 the method starts to fail. A nat-
ural question is whether it is possible to predict up for which values of rad the
method will be successful. We underline that the technique we propose is a verifica-
tion method, therefore among other conditions, the success or the failure is strictly
related to the accuracy of the approximate solution that could change from one
computation to the other. Hence it is not possible to determine a priori the max-
imum value for rad. However we can to get an idea of what happens when rad
increases and, based on that, we can guess which is the maximal admissible value
of rad. A necessary condition for the method to be successful is that all the radii
polynomials defined in (5) cross the r-axis. That occurs if

(Z
(1)
i − 1)2 − 4YiZ

(2)
i > 0 (8)
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rad r0 r1 r2 r3 r4 r5

1 · 10−5 1.2 · 10−4 1.0 · 10−4 9.2 · 10−5 1.4 · 10−4 1.3 · 10−4 1.0 · 10−4

1 · 10−4 0.0013 0.0011 0.0001 0.0015 0.0014 0.0012
1 · 10−3 0.0149 0.0115 0.0103 0.0184 0.0168 0.0122

1.5 · 10−3 0.0254 0.0186 0.0163 − 0.0307 0.0197
2.0 · 10−3 − 0.0272 0.0234 − − 0.0287
2.5 · 10−3 − 0.0390 0.0322 − − 0.0407
3.0 · 10−3 − − 0.0450 − − −
3.5 · 10−3 − − − − − −

Table 2: Enclosures of the eigenpairs of the complex interval matrix A, as rad grows.

Figure 1: Balls in C enclosing the six eigenvalues of any A ∈ A for rad = 1.3 · 10−3.

for all i = 1, . . . , n. Roughly speaking, if the value of rad increases, while the
numerical solution is kept fixed, the norms of the components of the vectors Y
and Z(1) increase. Thus there is a value of rad large enough such that some of the
inequalities (8) are not satisfied anymore. To be more precise, assuming that x̄ is
a good numerical approximate solution, we can estimate |f(x̄)|∞ ≈ |x̄|1rad, where
|x|1 =

∑
i |xi|. Then we can write |Y |∞ ≈ ‖R‖∞|x̄|1rad. Concerning Z(1), we see

from (2) that the radius of Df is the same as the radius of A. Then, assuming that

the matrix R has been properly computed so that I − R · D̂f(x̄) ≈ 0, we estimate
|Z(1)|∞ ≈ n‖R‖∞rad. Finally |Z(2)|∞ ≈ 2‖R‖∞. By substituting into (8), we obtain

radmax =
n+ 4‖R‖∞|x̄|1 − 2

√
4‖R‖2

∞|x̄|21 + 2n‖R‖∞|x̄|1
n2‖R‖∞

.

For A considered above, radmax are computed and presented in Table 3. Note there
that the prediction of radmax is more precise when the dimension n is larger.

Table 4 displays the results for the enclosure of two eigenpairs of A around
Â = XDX−1, where X is a random matrix and D = diag(1, 2, . . . , n) both for
n = 50 and n = 100 and the value of radmax.
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# 0 1 2 3 4 5
radmax 0.0016 0.0024 0.0028 0.0012 0.0014 0.0022

.

Table 3: radmax as a function of λ̄i, for i = 0, 1, . . . , 5.

n = 50

λ̄20 = 20 λ̄47 = 47
radmax = 5.698 · 10−6 radmax = 1.701 · 10−5

rad r
1 · 10−7 3.806 · 10−5

2 · 10−6 8.399 · 10−4

5 · 10−6 1.956 · 10−3

6 · 10−6 -

rad r
1 · 10−7 2.163 · 10−5

1 · 10−5 2.621 · 10−3

1.7 · 10−5 6.134 · 10−3

1.8 · 10−5 -

n = 100

λ̄5 = 5 λ̄95 = 95
radmax = 2.753 · 10−6 radmax = 7.9715 · 10−7

rad r
1 · 10−7 6.474 · 10−5

1 · 10−6 7.154 · 10−4

2 · 10−6 1.693 · 10−3

3 · 10−6 -

rad r
1 · 10−7 1.239 · 10−4

6 · 10−7 9.630 · 10−4

8 · 10−7 1.857 · 10−3

9 · 10−7 -

Table 4: Test the theoretically derived radmax to some rad used in computations.

Example 3: comparison. We now compare our method, denoted by radiipol,
with two different algorithms developed by S. Rump. The first one, denoted by
verifyeig, has been introduced in [14] with the primary goal of computing enclosures of
multiple of nearly multiple eigenvalues (and related eigenvectors) of interval matrices.
The second one, denoted by verifynlss, is based on a Krawczyk operator [15, 16]
and is a general routine to rigorously compute well separated zeros of nonlinear
functions. In fact, in the code verifyeig.m (available in the library INTLAB [19]),
where the method verifyeig has been implemented, the author suggests to use verifynlss
to compute simple and well separated eigenpairs. This method is implemented in
the code verifynlss.m in the library INTLAB [19]. Table 5 provides the average of
the radius of the balls enclosing the exact eigenpairs for each method.

For both experiments the test matrices A have been constructed as in the previous
section: given N we define D ∈ CN+1,N+1 as a diagonal matrix with entries given
by N equispaced values on the unit circle in the complex plane and 0, i.e. diag(D) =

[0, ei
2π
N
j], j = 1, . . . , N . Then let Â = XDX−1, where X is a complex random matrix

with entries in the complex square [−1, 1] + i[−1, 1] and finally define A as the
interval complex matrix centered in Â and of radius rad.
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N=5 N=10
rad 10−20 10−10 10−4 10−10 10−5 10−4 10−3

radiipol 9.14·10−15 2.76·10−9 0.0019 3.25·10−9 4.61·10−4 − −
verifyeig 4.69 ·10−15 2.07·10−9 0.0016 2.08·10−9 3.02·10−4 0.0049 −
verifynlss 6.26 ·10−9 − − − − − −

N=50 N=100 N=150
rad 10−10 10−8 10−5 10−10 10−8 10−7 10−10

radiipol 2.69·10−7 4.94·10−5 − 9.02·10−7 − − 1.31·10−6

verifyeig 5.59·10−8 9.45·10−6 − 1.31·10−7 2.07·10−5 − 1.64·10−7

verifynlss − − − − − − −

Table 5: Each number is the average of the radius of the disks enclosing the eigen-
values for each method. Comparison of the accuracy of the three methods as the
dimension N and the radius rad of the test matrix A change. The entry − means
that the method fails in the enclosure of at least one of the eigenpair.

The results presented in Table 5 confirm that the new approach radiipol is sat-
isfactory from the point of view of the accuracy of the results. Indeed, while the
algorithm verifynlss fails quite soon as N and rad increase (it fails for rad = 0 and
for all N ≥ 15), the new algorithm is successful also for large entries of A.
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Abstract

We present a completely new hp-anisotropic mesh adaptation technique for the
numerical solution of partial differential equations with the aid of a discontinuous
piecewise polynomial approximation. This approach generates general anisotropic
triangular grids and the corresponding degrees of polynomial approximation based on
the minimization of the interpolation error. We develop the theoretical background
of this approach and present a numerical example demonstrating the efficiency of this
anisotropic strategy in comparison with an isotropic one.

1. Introduction

Adaptive methods exhibit an efficient tool for the numerical solution of partial
differential equations (PDEs). Our aim is to develop an adaptive technique which is
able to generate general hp-anisotropic grids which can be employed in the framework
of discontinuous Galerkin method based on a discontinuous piecewise polynomial
approximation. The shape of an anisotropic element is extended in one dominant
direction.

The hp-adaptive method allows the adaptation in the element size h as well as
in the polynomial degree p. Several strategies of hp-adaptation have been proposed
over the years, see, e.g., [14] or [11] for a survey. Based on many theoretical works,
e.g., monographs [15] or papers [1, 5, 17] we expect that an error converges at an
exponential rate in the number of degrees of freedom. However, most of hp-adaptive
methods deal with h-isotropic refinement when the element marked for h-refinement
is split (isotropically) into several (usually four in 2D) daughter elements. Some
exception is, e.g., [13] where quadrilateral elements can be split onto two daughter
elements by a line in a either vertical or horizontal direction.

Our goal is to generate anisotropic grids similarly to those ones developed, e.g.,
in [4, 6, 9, 12, 16], for the first order finite volume and finite element methods.
In these works, the Hessian matrices (matrices of second order derivatives) are em-
ployed for the definition of a Riemann metric. Then the highly anisotropic triangular
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K

hK

h⊥

K

φK

ǫK

φK

r1
K

r2
K

K

Figure 1: An anisotropic element K characterized by hK , h
⊥
K and φK (left), and

an anisotropic element K characterized by r1K , r
2
K and φK with the corresponding

ellipse (right).

grids, which are quasi-uniform in this metric, are constructed. However, the Hes-
sian matrices correspond to the interpolation error for a piecewise linear approxima-
tion. In [2, 3], the Riemann metric (defining the anisotropic mesh) is developed for
a high degree of polynomial approximation. This approach is based on a particular
definition of the magnitude, orientation, and anisotropic ratio for the higher order
derivative of a function u to characterize its anisotropic behaviour. Being inspired
by these papers, we develop here a new strategy which is able to generate anisotropic
triangular grids and the corresponding degree of polynomial approximation for each
element of the mesh. This approach is based on the approximation of the interpola-
tion error in the L∞-norm by the leading terms of the Taylor expansion. The aim is
to keep the interpolation error under a given tolerance and to minimize the number
of degree of freedom.

2. An anisotropic element

In this section, we describe an anisotropy of triangles in a plane domain. Let
K ⊂ R

2 be an acute isosceles triangle, see Figure 1, left. By hK we denote its size
in the direction of its axis, h⊥

K denotes its size in the direction perpendicular of its
axis and φK ∈ [0, π) denotes the angle between its axis and the axis x1, see Figure 1,
left. The triple (hK , h

⊥
K , φK) defines the anisotropy of element K.

We can define the anisotropy in an alternative way. Let λ1
K > 0, λ2

K > 0, and
φK ∈ [0, π). We define the matrix MK by

MK := RT(φK)

(

λ1
K 0
0 λ2

K

)

R(φK) =

(

aK bK
bK cK

)

, (1)

where R(φK) is the the rotation matrix

R(φK) :=

(

cos φK − sinφK

sinφK cos φK

)

(2)
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and RT(φK) is its transpose matrix. Obviously, MK is a symmetric positive definite
matrix having eigenvalues λ1

K , λ
2
K . The equation

xTMKx = aKx
2
1 + 2bKx1x2 + cKx

2
2 ≤ 1, x = (x1, x2) ∈ R

2, (3)

defines an ellipse ǫK with the centre at origin, the semi-axes lengths

r1K = 1/
√

λ1
K , r2K = 1/

√

λ2
K (4)

and the angle between the axis x1 and the major axis of ǫK is φK , see Figure 1, right.
Let K denotes an acute isosceles triangle which is inscribed into ellipse ǫK and

which has the maximal possible area, see Figure 1, right. We say that K is gener-

ated by Mk. Hence, the anisotropy of this triangle K can be defined by the triple
(λ1

K , λ
2
K , φK) or the triple (r1K , r

2
K , φK). With the aid of techniques [7], we can de-

rive direct relations between triples (hK , h
⊥
K , φK) and (λ1

K , λ
2
K , φK) (or (r

1
K , r

2
K , φK)).

Namely, hK = 3
2
r2K and h⊥

K = 2
√
3r1K .

Let ei, i = 1, 2, 3 denote the edges of the triangle K inscribed into ǫK and having
the maximal area. The edges ei, i = 1, 2, 3 are considered as vectors from R

2 given
by their endpoints. In [6] we proved that

‖ei‖MK
=

√
3, i = 1, 2, 3, (5)

where ‖ei‖MK
:=
(

e
T
i MKei

)1/2
is the size of ei in the Riemann metric generated

by MK , compare with Definition 3.1 bellow. Hence, K is the equilateral triangle in
the metric generated by MK .

3. hp-anisotropic meshes

Let the computational domain Ω ⊂ R
2 be bounded with a polygonal bound-

ary ∂Ω. Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite
number of closed trianglesK with mutually disjoint interiors. We call Th = {K}K∈Th

a triangulation of Ω and assume that Th is conforming.
Moreover, to each K ∈ Th, we assign a positive integer pK (=local polynomial

degree of polynomial approximation onK). Then we define the set p :={pK ;K∈Th}
and the pair

Thp := {Th,p} (6)

is called the hp-mesh.
For the given hp-mesh Thp, we construct the space of piecewise polynomial dis-

continuous functions by

Shp = {v ∈ L2(Ω); v|K ∈ P pK(K) ∀K ∈ Th}, (7)

where P pK(K) is the space of polynomials or degree ≤ pK onK ∈ Th. The dimension
of Shp can be expressed (for two-dimensional domain) by

Nhp :=
∑

K∈Th

(pK + 1)(pK + 2)/2. (8)

We call this quantity the size of the hp-mesh Thp.
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Finally, by Fh we denote the set of edges of Th. Here the edges e ∈ Fh are
considered as vectors from R

2 given by its endpoints. The orientation of the edges
is arbitrary.

Similarly as in [4, 6, 9, 12, 16], we define the anisotropic triangular grid as a quasi-
uniform grid in a Riemann metric.

Definition 3.1. Let M : Ω → R
2×2 be a continuous mapping such that for each

x ∈ Ω, the matrix M(x) is symmetric and positive definite. Moreover, let v0, v1 ∈ R
2

such that v0 ∈ Ω and v0 + v1 ∈ Ω. The mapping v : [0, 1] → R
2, v(t) = v0 + tv1,

t ∈ [0, 1] defines a straight edge in Ω. Furthermore, we set

‖v‖M :=

∫ 1

0

(

v
′(t)TM(v0 + tv1)v

′(t)
)1/2

dt =

∫ 1

0

(

v
T
1M(v0 + tv1)v1

)1/2
dt. (9)

We call M the Riemann metric on Ω and ‖v‖M defines the size of edge v in the

Riemann metric M.

Remark 3.2. Let us note that if M is constant along v then (9) reduces to ‖v‖M =
(vT

1Mv1)
1/2. Moreover, if M(x) = I ∀x ∈ v (I= the identity matrix) then the size

of v in the Riemann metric M is equal to its length in the Euclidean metric.

In virtue of (5), we define a triangulation corresponding to the metric M.

Definition 3.3. Let ω > 0 be a given constant. Let M be the Riemann metric

defined on Ω, Th be a triangulation of Ω and Fh the corresponding set of edges. We

say that the triangulation Th is generated by metric M if

‖e‖M = ω ∀e ∈ Fh. (10)

Remark 3.4. For the given metric M, there does not exist (except special cases) any

triangulation generated by M in virtue of Definition 3.3. However, we can construct

a triangulation which satisfies (10) approximately by the least square technique,
see [6, 9]. Therefore, we replace (10) by ‖e‖M ≈ ω ∀e ∈ Fh in the sense of the

least square method. Moreover, let us note that for practical reasons, it is sufficient

to evaluate the metric M only in a finite number of nodes x ∈ Ω.

Finally, let P : Ω → [0,∞) be a given function. We define

pK := int

[

1

|K|

∫

K

P(x) dx

]

, K ∈ Th, (11)

where int[a] := ⌊a+1/2⌋ denotes the integer part of the number a+1/2, a ≥ 0. We
call P the polynomial degree distribution function.

We conclude that for the given Riemann metric M and for the given polynomial
degree distribution function P, there exists a hp-mesh Thp = {Th,p}, where Th is
given by Definition 3.3 in the sense of Remark 3.4 and p by (11). Our aim is to
define the metric M and the polynomial degree distribution function P such that
the corresponding hp-mesh is optimal in the sense specified later.
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4. Interpolation error

For simplicity, we deal with the space of functions V := C∞(Ω). Let x̄ =
(x1, x2) ∈ Ω be arbitrary but fixed. Let p > 0 be an integer, we define the inter-
polation operator Πhp : V → P p(Ω̄) such that

∂k

∂xl
1∂x

k−l
2

Πhpu(x̄) =
∂k

∂xl
1∂x

k−l
2

u(x̄)
∀l = 0, . . . , k ,
∀k = 0, . . . , p .

(12)

Therefore, Πhpu is the polynomial function of degree p on Ω which has the same value
and the same values of all partial derivatives up to order p at x̄ as the function u.

Using the Taylor expansion at x̄ = (x̄1, x̄2), we have

u(x) =

p+1
∑

k=0

1

k!

(

k
∑

l=0

(

k

l

)

∂ku(x̄)

∂xl
1∂x

k−l
2

(x1 − x̄1)
l(x2 − x̄2)

k−l

)

+O(|x− x̄|p+2), (13)

where (k
l
) = k!

l !(k−l)!
. From (12) and (13) we obtain

u(x)− Πhpu(x) = Ep
I (x) +O(|x− x̄|p+2), (14)

where

Ep
I (x) :=

1

(p+ 1)!

p+1
∑

l=0

[(

p+ 1

l

)

∂p+1u(x̄)

∂xl
1∂x

p+1−l
2

(x1 − x̄1)
l(x2 − x̄2)

p+1−l

]

(15)

is the interpolation error function of degree p = 0, 1, . . . .
At this point, we consider the following task: Let u ∈ V , x̄ ∈ Ω, ω > 0 and p > 0

be given, we seek a triangle K ′ with barycentre at x̄ such that

(C1) Ep
I (x) ≤ ω for all x ∈ K ′,

(C2) the area (two-dimensional Lebesgue measure) of K ′ is maximal.

The condition (C2) follows from the observation that a mesh having the maximal
possible triangles has a small number of degree of freedom.

Let B1 := {ξ; ξ = (ξ1, ξ2) ∈ R
2, ξ21 + ξ22 = 1} denote the unit sphere (in the

Euclidean metric) in R
2. We define the kth-(scaled) directional derivative of u ∈ V

in x ∈ Ω and in the direction ξ by

dku(x; ξ) :=
1

k!

k
∑

l=0

(

k

l

)

∂ku(x)

∂xl
1∂x

k−l
2

ξl1 ξ
k−l
2 , x ∈ Ω, ξ = (ξ1, ξ2) ∈ B1. (16)

Therefore, from (15) and (16), we have

Ep
I (x) = dp+1u

(

x̄;
x− x̄

|x− x̄|

)

|x− x̄|p+1, p = 0, 1, . . . , x ∈ Ω. (17)
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Figure 2: The curve F p, the domain Gp and the ellipse Hp for p = 3, 4, 5, 6, x̄ = (0, 0)
and the function u given by (20).

Let u ∈ V , x̄ ∈ Ω, ω > 0 and p > 0 be given. We define the sets

F p :=
{

x ∈ R
2; x = x̄+ ξ

∣

∣dp+1u(x̄; ξ)
∣

∣ , ξ ∈ B1

}

, (18)

Gp :=

{

x ∈ R
2; x = x̄+ tξ

(

ω

|dp+1u(x̄; ξ)|

)
1

p+1

, t ∈ [0; 1], ξ ∈ B1

}

, (19)

where p = 1, 2, . . . . If x ∈ F p then the directional derivative dp+1u(x̄, ·) in the
direction (x − x̄)/|x − x̄| is equal to |x − x̄|. Moreover, in virtue of (17) and (19),
Gp is the set such that Ep

I (x) ≤ ω ∀x ∈ Gp. The set F p is one-dimensional continuous
curve in R

2 whereas Gp is two dimensional sub-domain of R2 (it may be unbounded
if dp+1u(x̄; ξ) = 0 for some ξ). Figure 2 shows the curve F p and the domain Gp for
p = 3, 4, 5, 6, x̄ = (0, 0) and the function

u(x1, x2) = 10x10
1 + 2x10

1 x6
2 + x9

1x2 + 2x8
1x

3
2 − x7

1x
5
2 + 8x4

1x
6
2 + 2x10

2 . (20)

From (19) we find that if K is a triangle with the barycentre x̄ such that K ⊂ Gp

for some p then Ep
I (x) ≤ ω for all x ∈ K. In order to minimize the number of degree

of freedom of Shp, the aim is to have triangle K such that K ⊂ Gp and K has the
maximal possible area.

5. Definition of the metric

In the following, with the aid of the results from Section 4, we define the Riemann
metric M and the polynomial degree distribution function P introduced in Section 3.
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Let x̄ ∈ Ω, u ∈ V and p ≥ 1. Let ξmax
p ∈ B1 be the direction which maximizes

|dpu(x̄; ξ)| and ξ⊥p the direction orthogonal, i.e,

ξmax
p := argmax

ξ∈B1

|dpu(x̄; ξ)|, ξ⊥p ∈ B1, ξmax
p · ξ⊥p = 0. (21)

Then we define quantities

hmax
p :=

(

ω
∣

∣dp+1u(x̄; ξmax
p )

∣

∣

)1/(p+1)

, hmin
p :=

(

ω
∣

∣dp+1u(x̄; ξ⊥p )
∣

∣

)1/(p+1)

. (22)

Let us note that hmax
p ≤ hmin

p . Moreover, let φp ∈ [0, 2π) be such that ξmax
p =

(cosφp, sinφp) ∈ B1. Hence, the triple

{hmin
p , hmax

p , φp} (23)

defines the ellipse Hp which touches Gp at the nearest point to x̄, see Figure 2.
Moreover, we have observed experimentally that Hp is almost included in Gp.

Therefore, in virtue of (1), (4) and Definition 3.1, we define the metric M at x̄
by M(x̄) := Mp, where

Mp := RT(φp)

(

1/(hmax
p )2 0
0 1/(hmin

p )2

)

R(φp), K ∈ Th, p ≥ 1, (24)

and R(φp) is given by (2).
Finally, we have to define the polynomial degree distribution function P(x) at

x̄ ∈ Ω. For each integer p ≥ 1 we have matrix M(x̄) := Mp. We seek some criterion
choosing giving the optimal degree of polynomial approximation p. The aim is to
minimize Nhp (=size of the hp-mesh). The area of the element K generated by Mp

is proportional to the area of the ellipse defined by relation ξTMpξ = 1, ξ ∈ B1,
namely |K| = (2

√
3/2)hmax

p hmin
p . If |K| is an average volume of triangles from Th

then we need approximately ⌊|Ω|/|K|⌋ triangles. If p is the degree of polynomial
approximation, the total number of freedom for one element is (p+ 1)(p+ 2)/2 and
the value Nhp can be estimated (up to a constant)

Nhp ≈ (p+ 1)(p+ 2)

2

|Ω|
|K| . (25)

Then we deduce that in order to minimize Nhp, we need to choose the degree of
polynomial approximation p such that

P(x̄) = arg min
p=1,2,...

(p+ 1)(p+ 2)

hmax
p hmin

p

. (26)
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Figure 3: Comparison of the isotropic and the anisotropic hp-adaptation, the de-
pendence of the error in the X-norm with respect to the degree of freedom Nhp, the
total view (left) and the detail (right).

6. Numerical implementation

In Sections 2–5, we developed the method which defines the metric M(x) and
the polynomial degree distribution function P(x) for x ∈ Ω. Hence, in virtue of the
conclusion of Section 3, we have defined the hp-mesh for a given function u ∈ Vh.

The aim is to employ this strategy for the numerical solution of partial differ-
ential equations. Since the exact solution u is unknown, the natural approach is to
apply the previous hp-anisotropic mesh adaptation method to some smoothing of the
approximate solution uhp ∈ Shp. We obtain iteratively better and better hp-grids
and the corresponding approximate solutions. Moreover, for practical computation,
it is not necessary to evaluate M(x) and P(x) for all x ∈ Ω. It is enough to compute
M(xK) and P(xK) for all elements K of the given mesh (xK is the barycentre of K),
similarly as in [6, 9].

We demonstrate the potential of the proposed hp-anisotropic mesh adaptation
method by a comparison with the isotropic hp-adaptation method presented in [8].
We consider the scalar linear convection-diffusion equation (similarly as in [10])

−ε△u− ∂u

∂x1
− ∂u

∂x2
= g in Ω := (0, 1)2, (27)

where ε > 0 is a constant diffusion coefficient. We prescribe a Dirichlet boundary
condition on ∂Ω and the source term g such that the exact solution has the form
u(x1, x2) =

(

c1 + c2(1− x1) + e−x1/ε
) (

c1 + c2(1− x2) + e−x2/ε
)

with c1 = −e−1/ε,
c2 = −1 − c1. The solution contains two boundary layers along x1 = 0 and x2 = 0,
whose width is proportional to ε. Here we consider ε = 10−3.

We solve (27) with the aid of discontinuous Galerkin method with an interior
penalty. Figure 3 shows the convergence of the computational error in the norm
‖ · ‖2X := ‖ · ‖2L2(Ω) + ε| · |2H1(Ω) with respect to the number of degree of freedom.
We observe that the hp-anisotropic mesh adaptation is more efficient. Moreover, the
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Figure 4: Example (E1): the final hp-meshes obtained be the isotropic (top) and
the anisotropic (bottom) hp-adaptation, the total view (left), the detail around the
corner (centre) and the detail of the boundary layer (right).

proposed technique is able to reduce the number of degree of freedom and to keep the
level of the computational error during the optimization of the hp-mesh. Figure 4
shows the final grids obtained by the isotropic and the anisotropic technique.
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Abstract

The Euler methods are the most popular, simplest and widely used methods for the
solution of the Cauchy problem for the first order ODE. The simplest and usual gener-
alization of these methods are the so called theta-methods (notated also as θ-methods),
which are, in fact, the convex linear combination of the two basic variants of the Eu-
ler methods, namely of the explicit Euler method (EEM) and of the implicit Euler
method (IEM). This family of the methods is well-known and it is introduced almost
in any arbitrary textbook of the numerical analysis, and their consistency is given.
However, in its qualitative investigation the convergence is proven for the EEM, only,
almost everywhere. At the same time, for the rest of the methods it is usually missed
(e.g., [1, 2, 7, 8]). While the consistency is investigated, the stability (and hence, the
convergence) property is usually shown as a consequence of some more general theory.
In this communication we will present an easy and elementary prove for the conver-
gence of the general methods for the scalar ODE problem. This proof is direct and it
is available for the non-specialists, too.

1. Motivation and basic of the theta-method

Many different problems (physical, chemical, etc.) can be described by the initial-
value problem for first order ordinary differential equation (ODE) of the form

du

dt
= f(t, u), t ∈ (0, T ), (1)

u(0) = u0. (2)

We note that, using the semidiscretization, the time-dependent partial differential
equations also lead to the problem (1)–(2). Hence, the solution of such problem plays
a crucial role in mathematical modelling. (For simplicity, in sequel we consider only
the scalar problem, i.e., when f : IR2 → IR.) We know that under the global Lipshitz
condition, i.e., in case

|f(t, s1)− f(t, s2)| ≤ L|s1 − s2| for all (t, s1), (t, s2) ∈ dom(f) (3)

with the Lipschitz constant L > 0, the problem (1)–(2) has unique solution on the
entire domain dom(f).
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Since we have no hope of solving the vast majority of differential equations in
explicit, analytic form, the design of suitable numerical algorithms for accurately ap-
proximating solutions is essential. The ubiquity of differential equations throughout
mathematics and its applications has driven the tremendous research effort devoted
to numerical solution schemes, some dating back to the beginnings of the calculus.
Therefore, we apply some numerical method. Hence, the numerical integration of
the problem (1)–(2) – under the condition (3) – is one of the most typical tasks in
the numerical modelling of real-life problems.

Our aim is to define some numerical solution at some fixed point t⋆ ∈ (0, T ) to
the Cauchy problem (1)–(2). Therefore, we construct the sequence of the uniform
meshes with the mesh-size h = t⋆/N of the form

ωh = {tn = n · h, n = 0, 1, . . . , N},
and our aim is to define at the mesh-point t⋆ = tN a suitable approximation yN on
each fixed mesh.

This requires to give the rule how to define the mesh-function yh : ωh → IR.
The most popular, simplest and widely used method are the so-called single step
(one-step) schemes, particularly, the theta-method, which is frequently notated as
θ-method. Using the notation yh(tn) = yn, the θ-method is defined as

yn = yn−1 + h (θf(tn, yn) + (1− θ)f(tn−1, yn−1)) , n = 1, . . . , N, (4)

y0 = u0.

Here θ ∈ [0, 1] is a fixed parameter, and, it is for θ = 0 explicit, otherwise implicit
method. The θ-method is considered here as basic method since it represents the
most simple Runge-Kutta method (and also linear multistep method). For stiff
systems the cases θ = 0.5 trapezoidal rule and θ = 1 implicit (backward) Euler
are of practical interest, for non-stiff systems we can also consider θ = 0 explicit
(forward) Euler.

In mathematics and computational science, these methods are most basic method
for numerical integration of ordinary differential equations and they are the simplest
Runge-Kutta methods.

Let us define the local truncation error for the θ-method, under the assumption
that f (and hence, the solution u(t)) is sufficiently smooth.

As it is known, the local truncation error ln(h) for the θ-method can be defined
as

ln(h) = u(tn)− u(tn−1)− hθf(tn, u(tn))− h(1− θ)f(tn−1, u(tn−1)), (5)

where u(t) stands for the solution of the problem (1)–(2). Therefore, we have the
relation

ln(h) = u(tn)− u(tn−1)− hθu′(tn)− h(1− θ)u′(tn−1). (6)

Hence, by expanding u(tn) = u(tn−1 + h) and u′(tn) = u′(tn−1 + h) into the Taylor
series around the point t = tn−1, we get for the local approximation error the relation

ln(h) = (1/2− θ)h2u′′(tn−1) + (1/6− θ/2)h3u′′′(tn−1) +O(h4). (7)
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The order of a numerical method is defined by the local truncation error: when
ln(h) = O(hp+1) then the method is called consistent of order p. This means that
for both Euler methods (θ = 0 and θ = 1) the order of consistency is equal to one,
while for the trapezoidal rule (θ = 0.5) the order of consistency is equal to two.

However, as it is well-known, the consistency itself does not guarantee the con-
vergence of a numerical method, the stability is also required.

Roughly speaking, the consistency is the characterization of the local (trunca-
tion) error of the method, which is the error committed by one step of the method.
(That is, it is the difference between the result given by the method, assuming that
no error was made in earlier steps and hence having the exact solution.) On the
other hand, the stability guarantees that the numerical method produces a bounded
solution whenever the solution of the exact differential equation is bounded, in other
words, the local truncation errors are damped out. The convergence means that the
numerical solution approximates the solution of the original problem, i.e., a numeri-
cal method is said to be convergent if the numerical solution converges to the exact
solution as the step size of mesh h tends to zero.

Although the consistency analysis of the θ-method is introduced almost in any
arbitrary textbook of the numerical analysis, typically the stability (and hence, the
convergence) is shown directly for the explicit method, only.

Our aim is to give an easy and elementary prove for the convergence of the
general θ-method, i.e., we consider the implicit methods. The proof is direct and
it is available for the non-specialists, too. Moreover, we give the expression for the
stability constant of the θ-method.

This paper extends the results of the paper [4] in two directions: we prove the con-
vergence of any implicit θ-method, and we also give sharp estimate for the stability
constant, improving the result obtained in paper [4].

The paper is organized as follows. In Section 2, for sake of completeness, we
formulate the basic results for the explicit Euler method, proving its convergence
and stability constant. Section 3 contains the simple and compact proof of the
convergence of the θ-method, and we define the order of its convergence, too. Finally,
we finish the paper with giving some remarks and conclusions.

2. Convergence and the stability constant of the explicit Euler method

In this section we use a sequence of meshes ωh and we define the numerical solution
at some fixed point t⋆ ∈ (0, T ) to the Cauchy problem (1)–(2) for the θ-method with
θ = 0, i.e., by using the scheme

yn = yn−1 + hf(tn−1, yn−1), n = 1, 2, . . . , N, (8)

y0 = u0

with Nh = t⋆.

The following statement will be used several times within the paper.
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Lemma 2.1 Let a ≥ 1, b ≥ 0, and sn be such numbers that the inequalities

|sn| ≤ a|sn−1|+ b, n = 1, 2, . . . (9)

hold. Then the estimate

|sn| ≤ an
(

|s0|+ n
b

a

)

, n = 0, 1, 2, . . . (10)

is valid.

Proof. By using induction, we can readily verify the statement. Indeed, for
n = 0 (10) is clearly valid. Now, under the assumption that (10) holds for n − 1,
from (9) we have

|sn| ≤ a

[

an−1

(

|s0|+ (n− 1)
b

a

)]

+ b

= an
(

|s0|+ n
b

a

)

−an−1b+ b
︸ ︷︷ ︸

≤0

≤ an
(

|s0|+ n
b

a

)

, (11)

which yields the statement. 2

For the EEM the local truncation error at the mesh-point t = tn can be written
as

ln(h) = u(tn)− u(tn−1)− hu′(tn−1) =
h2

2
u′′(ϑEEM

n ), (12)

where ϑEEM
n ∈ (tn−1, tn) is a given value. Hence, setting M2 = max[0,t⋆] |u′′|, we get

ln(h) ≤ l(h) := M2

h2

2
. (13)

Let us consider the EEM defined by the one-step recursion (8). Due to (12), we
have

u(tn) = u(tn−1) + hf(tn−1, u(tn−1)) + ln(h). (14)

Hence, for the global error en = u(tn) − yn at the mesh-point t = tn we get the
recursion in the form

en = en−1 + h (f(tn−1, u(tn−1))− f(tn−1, yn−1)) + ln(h). (15)

Hence, using the Lipschitz property (3) and (13), we obtain

|en| ≤ |en−1|+ hL|en−1|+ l(h) = (1 + Lh)|en−1|+ l(h), (16)

for any n = 1, 2, . . . , N . Then, by choosing a = 1 + Lh and b = l(h), and using the
inequality 1 + x ≤ exp(x) for x ≥ 0, Lemma 2.1 implies the estimate

|en| ≤ [exp(hL)]n
[

|e0|+
nl(h)

1 + Lh

]

≤ [exp(hL)]n [|e0|+ nl(h)] . (17)
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Since nh = tn ≤ t⋆, the following relations obviously hold for any n = 1, 2, . . . , N :

[exp(hL)]n = exp(Lhn) = exp(Ltn) ≤ exp(Lt⋆),

nl(h) = nM2

h2

2
=

M2tn
2

h ≤ M2t
⋆

2
h.

Because e0 = 0, the relation (17) results in the estimate

|en| ≤ CEEM · h, (18)

for all n = 1, 2, . . . , N with CEEM = exp(Lt⋆)
M2t

⋆

2
. Putting n = N into (18), we get

|eN | ≤ CEEM · h. (19)

This proves the first order convergence of the EEM with the stability constant CEEM .

3. Convergence of the implicit theta methods

The convergence of the implicit θ-method (i.e., for θ ∈ (0, 1]) cannot be proven
directly as it was done previously. The main reason is that from the corresponding
error recursion the inequality (9) cannot be obtained directly, due to the implicitness
with respect to en. The usual way of proving the convergence of the θ-method is

to show the zero-stability, by using its first characteristic polynomial. (The proof is
complicated, and it can be found in [6, 10].)

In the sequel, using Lemma 2.1, we give an elementary proof of the convergence.

To this aim, we first give a uniform estimate for the local approximation error,
which, by (6), has the form

ln(h) = u(tn)− u(tn−1)− (1− θ)hu′(tn−1)− θu′(tn)

= θ (u(tn)− u(tn−1)− hu′(tn)) + (1− θ) (u(tn)− u(tn−1)− hu′(tn−1)) . (20)

The Taylor polynomial with Lagrange remainder gives

u(tn−1) = u(tn)− hu′(tn) +
h2

2
u′′(tn)−

h3

6
u′′′(ϑ1

n),

u(tn) = u(tn−1) + hu′(tn−1) +
h2

2
u′′(tn−1) +

h3

6
u′′′(ϑ2

n).

(21)

Using the relation u′′(tn) = u′′(tn−1)+hu′′′(ϑ3

n) (where ϑ
i
n ∈ (tn−1, tn) for i = 1, 2, 3),

substitution (21) into (20) results in the equality

ln(h) =
h2

2
(1− 2θ)u′′(tn−1) +

h3

6

(

−3θu′′′(ϑ3

n) + θu′′′(ϑ1

n) + (1− θ)u′′′(ϑ2

n)
)

. (22)

Hence, using the notation M3 = max[0,t⋆] |u′′′|, we obtain

|ln(h)| ≤ l(h) = Cθ
2
h2 + Cθ

3
h3, (23)
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where

Cθ
2
=

|1− 2θ|
2

M2, Cθ
3
=

1 + 3θ

6
M3. (24)

We consider the θ-method, which means that the values yn at the mesh-points ωh

are defined by the one-step recursion (4). Rearranging the local truncation error for
θ-method of the form (5), and using the formula (4), for global error en we get the
recursion

en = en−1 + hθ (f(tn, u(tn))− f(tn, yn))

+ h(1− θ) (f(tn−1, u(tn−1))− f(tn−1, yn−1)) + ln(h), n = 1, . . . , N, (25)

with e0 = 0. This equality, by using the Lipschitz continuity, implies the relation

|en| ≤ |en−1|+ θLh|en|+ (1− θ)Lh|en−1|+ |ln(h)|, n = 1, . . . , N. (26)

Using the uniform estimate (23), (26) yields that with the choice

a =
1 + (1− θ)Lh

1− θLh
, b =

l(h)

1− θLh
(27)

the recursion

|en| ≤ a|en−1|+ b, n = 1, 2, . . . , N , (28)

holds for the values

0 < h <
1

θL
. (29)

Due to the obvious relations

a = 1 +
Lh

1− θLh
≥ 1, b ≥ 0, (30)

Lemma 2.1 is applicable to the recursion (28), which results in the validity of the
estimate

|en| ≤ an
(

|e0|+ n
b

a

)

= an
(

|e0|+ tn
l(h)

h

1

1 + (1− θ)Lh

)

≤ an
(

tn
l(h)

h

)

, (31)

for any n = 0, 1, 2, . . . , N and h, satisfying (29).

We give an estimate for an. According to (30), we have

a = 1 +
Lh

1− θLh
= 1 +

1

θ
· θLh

1− θLh
. (32)

Let ε > 0 be arbitrary fixed number. Then for any x ∈ (0, ε/(1 + ε)) the inequality
x2/(1− x) ≤ εx holds. Therefore, owning to the identity

x

1− x
= x+

x2

1− x
,
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we have the estimate

x

1− x
≤ (1 + ε)x, for any x ∈

(

0,
ε

1 + ε

)

. (33)

Applying (33) to the second term on right-hand side (32), we obtain

a < 1 +
1

θ
· (1 + ε)θLh = 1 + (1 + ε)Lh for any h ∈ (0, h0) , (34)

where
h0 = h0(ε) =

ε

(1 + ε)θL
. (35)

Hence, using again the estimation 1 + s < exp(s) for s > 0, we get

an < exp (L(1 + ε)tn) , h ∈ (0, h0) . (36)

Since for ε > 0 the inequality ε/(1 + ε) < 1 holds, therefore under the condition
h ∈ (0, h0) the requirement (29) is satisfied, too. Hence, based on relations (31), (23)
and (36), we can formulate our results in the following statements.

Theorem 3.1 Let ε > 0 be any fixed number and ωh a mesh with mesh-size h < h0,

where h0 is given in (35). Then for the global error en of the θ-method with θ ∈ (0, 1]
the estimate

|en| ≤ tn
(

Cθ
2
h + Cθ

3
h2
)

exp (L(1 + ε)tn) (37)

holds for any n = 1, 2, . . . , N , with the constants Cθ
2
and Cθ

3
defined in (24).

Let us apply Theorem 3.1 for the value n = N . Then we have the following
statement.

Corollary 3.2 Under the assumptions and notations of the Theorem 3.1, for the

global error eN the estimate

|eN | ≤ t⋆
(

Cθ
2
h + Cθ

3
h2
)

exp (L(1 + ε)t⋆) (38)

holds.

The formula (38) gives an estimate for the global error at the mesh-point t⋆ =
tN = Nh of the θ-method with θ ∈ (0, 1] for any fixed h ∈ (0, h0). Moreover,
ε depends on h0, and, due to (35), ε also tends to zero as h0 → 0. Therefore, letting
h0 → 0 on both sides of (38), we get the following statement.

Theorem 3.3 The θ-method with any fixed θ ∈ (0, 1] is convergent at any fixed point

t⋆ ∈ (0, T ). Moreover, it is of the first order for θ 6= 0.5, and of the second order for

θ = 0.5, with the stability constants Cθ
2
t⋆ exp(Lt⋆) and Cθ

3
t⋆ exp(Lt⋆), respectively.
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Since for the explicit Euler method we have θ = 0 and C0

2
= CEEM (c.f. formu-

las (15) and (24)), we can summarize our results in the following statement.

Theorem 3.4 For the Cauchy problem (1)–(2) under the Lipschitz condition (3)
the θ-method with any fixed θ ∈ [0, 1] is convergent at any fixed point t⋆ ∈ (0, T ).
The rate of convergence of the method is equal to two for θ = 0.5, otherwise it is of

the first order. The stability constant Cθ of the method is defined as

Cθ =











1 + 3θ

6
M3t

⋆ exp(Lt⋆) for θ = 0.5,

|1− 2θ|
2

M2t
⋆ exp(Lt⋆) for θ 6= 0.5,

(39)

respectively.

4. Concluding remarks

Finally, we give some comments.

♦ The convergence on the interval [0, t⋆] yields the relation

lim
h→0

max
n=1,2,...,N

|en| = 0.

As one can easily see, based on the relations (15) (for the EEM) and (37) (for
the θ-method) the global error |en| at any mesh-point can be bounded by the
expression CEEM · h (for the EEM) and by term, standing on the right-hand
side of (38) (for the IEM). This means that both methods are convergent on
the interval [0, t⋆] with the same order.

♦ In our paper we did not consider roundoff error, which is always present in
computer calculations. At the present time there is no universally accepted
method to analyze roundoff error after a large number of time steps. The three
main methods for analyzing roundoff accumulation are the analytical method,
the probabilistic method and the interval arithmetic method, each of which
has both advantages and disadvantages.

♦ In the implicit θ-method in each step we must solve a -usually non-linear-
equations, namely, the root of the equation. This can be done by using some
iterative method such as direct (function) iteration, Newton method and mod-
ified Newton method.

♦ In this paper we have been concerned with the stability and accuracy properties
of the Euler methods in the asymptotic limit of h → 0 and N → ∞ while N ·h
is fixed. However, it is of practical significance to investigate the performance
of methods in the case of fixed h > 0 and n → ∞. Specifically, we would like
to ensure that when applied to an initial value problem whose solution decays
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to zero as t → ∞, the Euler methods exhibit a similar behavior, for fixed
h > 0 and tn → ∞. This problem is investigated on the famous Dahlquist
scalar test equation, and it requires the so called A-stability property [3]. As
it is known (e.g. in [8]), the θ-method is A-stable (“absolute stable”) for the
values θ ∈ [0.5, 1], otherwise the θ-method is bounded only under some strict
condition for h. The latter makes these methods (including the EEM, too)
unusable for several classes of the problem, like stiff problems.

♦ Why consider the θ-method, i.e., analyze the method with any θ in [0, 1], not
just 0, 0.5 and 1? We can list several reasons.

– The concept of order is based on assumption that error is concentrated on
the leading order of Taylor series expansion (on real computers, h is small,
but finite). As formula (7) shows, the case θ = 1/3 gets rid of O(h3) while
retaining O(h2). Hence, for different types of f(t, u) one can tune θ to
control whether O(h3) and higher order terms or O(h2) and higher order
terms contribute to the overall error when h is finite.

– It may be possible to choose a θ that generates a close-to-optimal or
smaller error. E.g., in [9] it is shown that the optimality criterion

min
θ

max
−∞<z<0

| exp(z)− R(z)|

leads to the value θ ≈ 0.878.

– θ-method is an example of a general approach to designing algorithms in
which geometric intuition is replaced by Taylor series expansion. Invari-
ably the implicit function theorem is also used in the design and analysis
of this scheme.

– The implicit Euler method (the case θ = 1) is very practical: it is a simple
yet robust method for solving stiff ODE’s.

– In some applications, a value such as θ = 0.55 is used as trade-off between
extended stability and second order accuracy.

♦ The qualitative analysis of the θ-method is investigated in several works, mainly,
by its use to the numerical solution of some semidiscretized linear parabolic
problems, (e.g. [5, 11]).
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Abstract

The problem of a solving a class of hypersingular integral equations over the bound-
ary of a nonplanar disc is considered. The solution is obtained by an expansion in basis
functions that are orthogonal over the unit disc. A Fourier series in the azimuthal
angle, with the Fourier coefficients expanded in terms of Gegenbauer polynomials is
employed. These integral equations appear in the study of the interaction of water
waves with submerged thin plates.

1. Introduction

The aim of the present study is to consider the semi-analytical solution of a class
of two-dimensional hypersingular integral equations. These equations can arise in
the study of the interaction of water waves with submerged plates and the method
of solution can be classified in the general area of spectral methods.

When the physical problem is two-dimensional and thus, the hypersingular in-
tegral equations is onedimensional, an efficient method can be applied for solution
based on expansions in terms of Chebyshev polynomials. These problems can be
related to scattering by flat [17] and curved [18] submerged plates, and by surface-
piercing plates [18], and the trapping of water waves by submerged plates [19]. They
used an expansion-collocation method to solve the one-dimensional hypersingular in-
tegral equations, in which the unknown is expanded using Chebyshev polynomials of
the second kind. This method is very effective, and its convergence has been proved
by Golberg [5, 6] and by Ervin & Stephan [1], in various function spaces. Ervin &
Stephan [1] obtained the rate of convergence in appropriate Sobolev spaces. See also
Frenkel [4] and Kaya & Erdogan [8].
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The three-dimensional scattering by a thin disc, in deep water was investigated
by Farina and Martin [2] and by Ziebell and Farina [20]. The authors solved the
governing twodimensional hypersingular integral equation numerically using a spec-
tral method using as basis functions, Gegenbauer polynomials in the radial variable.
Physcally, when the plate is very close to the free surface, resonant frequencies can
occur and this phenomenon has been inverstigated by Farina [3].

In this work, we ilustrate the spectral method by choosing the of problem a sub-
merged disc is perturbed out of it original plane, so the disc could be denominated
wrinkled or rough. This type of problem has been solved approximately, for circular
caps and rough discs by Ziebell and Farina [20].

A similar problem in acoustics has been studied by Jansson [7], where the scat-
tering of an acoustic wave from a thin circular disc was investigated by an integral
equation method where the disc is modelled as part of an infinite interface between
two half-spaces; this interface is then perturbed. However, this approach causes the
behaviour of the solution near the edge of the disc to produce singularities at the
edge of the disc.

Before presenting the integral equation that we will focus on, let us present in
the next section, the physical and differential problem that originates it.

2. Formulation

A Cartesian coordinate system is chosen, in which z is directed vertically down-
wards into the fluid. We take the mean free surface lying at z = 0. We assume
the presence of a submerged body into the fluid with a smooth, closed and bounded
surface S. We suppose that the motions of the fluid are of small-amplitude, time-
harmonic, that the fluid is incompressible and inviscid, and that the motion is irrota-
tional. We denote φ as the potential flow and [φ] as the discontinuity in φ across S.
Thus, the time dependent velocity potential is Re{φ(x, z, t)}e−iωt, where ω is the
angular frequency.

The conditions to be satisfied by φ are Laplace’s equation
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

φ = 0 in the fluid

along with the free-surface condition

Kφ+
∂φ

∂z
= 0 on z = 0,

where K = ω2/g; g being the acceleration due to gravity.
On the surface of the body, the normal velocity is prescribed by

∂φ

∂n
= V in S, (1)

where V is a given function and ∂
∂n

denotes normal differentiation.
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Additionally, φ must satisfy a radiation condition:

r1/2
(

∂φ

∂r
− iKφ

)

→ 0 when r = (x2 + y2)1/2 → ∞.

The points P , Q denote points in the fluid and the points p, q denote points on
the submerged body.

The free surface Green function for this problem is given by

G(P,Q) ≡ G(ξ, η, ζ ; x, y, z) = G0(R, z − ζ) +G1(R, z + ζ), (2)

where R = ((x− ξ)2 + (y − η)2)1/2, G0(R, z − ζ) = (R2 + (z − ζ)2)−1/2 and

G1(R, z + ζ) =

∫

∪
∞

0

e−k(z+ζ)J0(kR)
k +K

k −K
dk. (3)

Here J0 is the Bessel function of order zero. The path integral defining G1 above runs
below the singularity K. G satisfies the free surface condition, the Laplace equation,
and have a weak singularity at P = Q.

For any harmonic function φ, satisfying φ = O(r−1) as r → ∞, we have from
Green’s second identity, the following integral representation.

φ(P ) =
1

4π

∫

S

(

φ(q)
∂

∂nq

G(P, q)−G(P, q)
∂φ

∂nq

)

dSq, (4)

where ∂
∂nq

denotes normal differentiation at q on S.

Now, for a thin body with surface Ω, denote the two sides of Ω by Ω+ and Ω−

and define the discontinuity in φ across Ω by

[φ] = lim
Q→q+

φ(Q)− lim
Q→q−

φ(Q),

where q ∈ Ω, q− ∈ Ω−, q+ ∈ Ω+ and Q is a point in the fluid. Thus, equation (4)
reduces to

φ(P ) =
1

4π

∫

Ω

[φ(q)]
∂

∂nq
G(P, q) dS, (5)

where nq = n+
q denotes now the normal unit vector at q on Ω+ . Applying boundary

condition (1) to (5) gives

1

4π

∫

×
Ω

[φ(q)]
∂2

∂nq∂nq
G(p, q) dSq = V (p), p ∈ Ω, (6)

where the integral must be interpreted in the Hadamard finite-part sense. Equa-
tion (6) is the governing hypersingular integral equation for [φ]; this is to be solved
subject to the edge condition

[φ] = 0 in ∂Ω.
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Now let

Ω : z = F (x, y) +
b

2
, (x, y) ∈ D,

where D is the unit disc in the xy-plane and b
2
is the depth to which the body is

submerged. Let p, q ∈ Ω such that p = (ξ, η, ζ), q = (x, y, z). The normal vector
to Ω is then given by

N =

(

−∂F

∂x
,−∂F

∂y
, 1

)

and a unit normal vector is therefore, expressed by n = N/|N|. Using the notation

w(x, y) = [φ(q)], (7)

it can be shown by a direct calculation that formula (5) becomes

φ(ξ, η, ζ) =
1

4π

∫

D

w(x, y)
N ·RF

R3
F

dS +
1

4π

∫

D

w(x, y)(∇G1 ·N) dS, (8)

where RF = (ξ − x, y − η, ζ − F (x, y)), RF = |RF| and dS = dx dy.

Our goal now is to clarify and understand the governing equation (6). In order
to do this, consider the following definitions and notations.

F1 =
∂F

∂x
, F2 =

∂F

∂y
(9)

with F 0
1 and F 0

2 being the corresponding functions at (ξ, η). Let also Λ = F (x,y)−F (ξ,η)
R

and Λ̄ = F (x,y)+F (ξ,η)
R

and define the angle Θ by x − ξ = R cosΘ and y − η =
R sinΘ.

Projecting onto D, we can rewrite (6) as

1

4π

∫

×
D

H w(q)dA+
1

4π

∫

D

W w(q)dA = V (p), p ∈ D, (10)

where (see [12])

H(ξ, η; x, y) =
1

R3

(

1 + F1F1
0 + F2F2

0

(1 + Λ2)
3

2

− 3
(F1 cosΘ + F2 sinΘ− 1)(F1

0 cosΘ + F2
0 sinΘ− 1)

(1 + Λ2)
5

2

)

(11)

and

W =
∂2G1

∂nq∂np

∣

∣

∣

∣

D

=

∫

∪
∞

0

e−kΛ̄Re−kbK k +K

k −K
dk, (12)
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where

K = F1F
0
1

k

2R
(2 sin2ΘJ1(kR) + kR cos2Θ(J0(kR)− J2(kR)))

+F2F
0
2

k

2R
(2 cos2 ΘJ1(kR) + kR sin2Θ(J0(kR)− J2(kR)))

+(F2F
0
1 + F1F

0
2 )

k

2R
cosΘ sinΘ (kR(J0(kR)− J2(kR))− 2J1(kR))

+(F 0
1 − F1)k

2 cosΘJ1(kR)

+(F 0
2 − F2)k

2 sinΘJ1(kR)

+k2J0(kR). (13)

Equation (10) is the governing equation for the problem of any submerged non planar
circular disc Ω in water of infinite depth. Its solution gives the jump in the velocity
potential φ across Ω. With this information, one can evaluate φ at any point P in
the fluid by using (8). Equation (10) could be solved numerically, although not by
the semi-analytical expansion-collocation method proposed by Farina e Martin [2]
for the solution of hypersingular integral equations on a disc. Alternatively, an
approximation to the solution could be obtained by a boundary perturbation method.
We present such a method next. This method follows the one proposed by Martin [12]
for treating the problem of a wrinkled disc in an unbounded fluid.

3. Perturbation method

We now assume that

V (p) = n3, n3 =
1

√

F 2
1 + F 2

2 + 1
, (14)

where n3 is the vertical component of the unit normal vector to the disc. This
simplifies the following analysis and corresponds physically a situation where the
disc performs heave (vertical) oscillations. Thus the problem stated in Section 2
becomes a radiation problem.

In order to consider a perturbation of the flat disc, we introduce the function f
such that

F (x, y) = ǫf(x, y), (15)

where ǫ is a small parameter and f is independent of ǫ. In [12] it is shown that

H =
1

R3
{1 + ǫ2K2 +O(ǫ4)},

where

K2 = f1f
0
1 + f2f

0
2 − 3

2
λ2 − 3(f1 cosΘ + f2 sinΘ− λ)(f 0

1 cosΘ + f 0
2 sin Θ),
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λ = (f(x, y)−f(x i, η))/R and fj , f
0
j are defined similarly to Fj , F

0
j ; see the comments

after (9).
In order to get a similar expression for W , substitute (15) in (12), giving

W = W0 + ǫW1 + ǫ2W2, (16)

where

W0 =

∫

∪
∞

0

e−k(ǫ(f(x,y)+f(ξ,η))+b)k2J0(kR)
k +K

k −K
dk, (17)

W1 = [(f 0
1 − f1) cosΘ + (f 0

2 − f2) sin Θ]

×
∫

∪
∞

0

k +K

k −K
e−k(ǫ(f(x,y)+f(ξ,η))+b)k2J1(kR) dk, (18)

and

W2 =

[

sin2 Θ

R
f1f

0
1 +

cos2Θ

R
f2f

0
2 − (f2f

0
1 + f1f

0
2 )
sin (2Θ)

2R

]

×
∫

∪
∞

0

e−k(ǫ(f(x,y)+f(ξ,η))+b)kJ1(kR)
k +K

k −K
dk

+

[

cos2Θf1f
0
1 + sin2 Θf2f

0
2 − (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

×1

2

∫

∪
∞

0

e−k(ǫ(f(x,y)+f(ξ,η))+b)k2(J0(kR)− J2(kR))
k +K

k −K
dk. (19)

Expanding e−k(ǫ(f(x,y)+f(ξ,η))+b) in Taylor’s series, we obtain

W0 = W00 + ǫW01 + ǫ2W02,

W1 = W10 + ǫW11 + ǫ2W12,

W2 = W20 + ǫW21 + ǫ2W22,

where

W00 =

∫

∪
∞

0

k +K

k −K
e−kbk2J0(kR) dk (20)

and the functions W01, . . . ,W22 are given in appendix A.
Substituting (15) in (14) and expanding in Taylor series, we get

n3 = 1 +
1

2

(

f 2
1 + f 2

2

)

ǫ2 +O(ǫ3). (21)

Similarly, for w, assume

w = w0 + ǫw1 + ǫ2w2 + .... (22)
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Now, substituting (16) and (22) in (10), with V given by (21), we obtain

1

4π

∫

×
D

w0
dA

R3
+

1

4π

∫

D

W00w0 dA = 1, (23)

1

4π

∫

×
D

w1
dA

R3
+

1

4π

∫

D

W00w1 dA = − 1

4π

∫

D

(W10 +W01)w0 dA, (24)

1

4π

∫

×
D

w2
dA

R3
+

1

4π

∫

D

W00w2 dA = − 1

4π

∫

×
D

K2w0
dA

R3

− 1

4π

∫

D

(W02 +W11 +W20)w0 dA

− 1

4π

∫

D

(W01 +W10)w1 dA

+
1

2

(

f 2
1 + f 2

2

)

. (25)

Note that equation (23) appears in [11, eq. 4.1] and in [2, eq. 17]. Thus, the first
order equation of the present perturbation method recovers the governing equation
for the plane disc: this corresponds to the problem of a horizontal and plane circular
disc performing heave oscillations.

By defining the integral operators

Hijw =

∫

D

Wijw dA ∀ i, j ∈ {0, 1, 2},

Hw =

∫

×
D

w
dA

R3
,

K2w =

∫

×
D

K2w
dA

R3
,

we can write equations (23)-(25) in a more compact form as

(H +H00)w0 = 1, (26)

(H +H00)w1 = −(H10 +H01)w0, (27)

(H +H00)w2 = −(K2 +H02 +H11 +H20)w0 − (H01 +H10)w1 +
1

2
(f 2

1+f 2
2 ) (28)

Equations (26)–(28) form a sequence of integral equations that approach the
solution of the governing equation (10). Note that the simple structure of these
equations offers an alternative to the solution of the problem: in order to solve
it, one has just to invert the integral operator H00 + H. Note further that the
function f is only present in the right-hand side of the equations. This means that
all the information about the specific geometry of the plate is in these terms of the
equations. Thus, it is possible to pre-solve the problem for any perturbation of the
disc by inverting the operator mentioned above. This can be done efficiently by the
numerical method presented in Section 4.
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4. Alternative expressions and numerical method

In this section we show how to compute a solution of the problem formulated in
the section above.

4.1. Alternative expressions for W

The integrands of the integral equations (26)–(28) involve the regular part of the
free surface Green function, that is, G1, and its derivatives. The numerical imple-
mentation of these functions are not trivial. Specifically, these integrands present
path integrals that involve Bessel functions. Nevertheless, we can express these in-
tegrals in terms of Bessel functions and Struve functions which are suitable for more
efficient numerical calculation. According to [13] (see also [15, 16]), we have

G1 =

∫

∪
∞

0

k +K

k −K
e−k(z+ζ)J0(kR) dk

= K

[

(X2 + Y 2)−1/2 − πe−Y (H0(X) + Y0(X))− 2

∫ Y

0

et−Y (X2 + t2)−1/2dt

]

−2πiKe−Y J0(X), (29)

where X = KR, Y = K(z + ζ), H0 is the Struve function of order 0 and J0 and Y0

denote the Bessel functions of the first and second kind, respectively. Expression (29)
is suitable for numerical calculation; this has been used is several computer codes for
water wave analysis. See for instance [10].

Using (29), it can be shown that the integrands W00, . . . ,W22, originally written
as (39–45) in appendix A, admit similar representations. For example,

W00 = 2K2(R2 + b2)−1/2 + (2Kb− 1)(R2 + b2)−3/2 + 3b2(R2 + b2)−5/2

−πK3e−Kb(H0(KR) + Y0(KR))− 2K3e−Kb

∫ Kb

0

et((KR)2 + t2)−1/2 dt

+2πiK3e−KbJ0(KR) (30)

is an alternative expression for W00, which allows more efficient numerical computa-
tion than (39) does. The expression (30) does not involve path integrals whose calcu-
lation are computationally expensive. Furthermore, the Struve and Bessel functions
present in this alternative term are efficiently computed by approximating orthogonal
polynomials; see [14]. Integrals such as the one in (30) can be efficiently computed;
see [13] and [15]. Similar alternative expressions for the W01,W02,W10 and W20 are
shown in appendix B.

4.2. Expansion-collocation method

4.2.1. Review of the one-dimensional theory

In two-dimensions, many wave problems involving thin plates can be reduced to
an equation of the form

×
∫ 1

−1

{

1

(x− t)2
+H(x, t)

}

v(t) dt = f(x) for −1 < x < 1, (31)
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supplemented by two boundary conditions, which we take to be v(−1) = v(1) = 0.
Here, v is the unknown function, f is prescribed and the kernel H is known. As-
suming that f is sufficiently smooth, the solution v has square-root zeros at the
end-points. This suggests that we write

v(x) =
√
1− x2 u(x).

Then, we expand u using a set of orthogonal polynomials; a good choice is to use
Chebyshev polynomials of the second kind, Un, defined by

Un(cos θ) =
sin (n+ 1)θ

sin θ
, n = 0, 1, 2, . . . .

This is a good choice because of the formula

1

π
×
∫ 1

−1

√
1− t2 Un(t)

(x− t)2
dt = −(n + 1)Un(x). (32)

Thus, we approximate u by
N
∑

n=0

anUn(x),

substitute into (31) and evaluate the hypersingular integral analytically, using (32).
To find the (N + 1) coefficients an, we collocate at (N + 1) points; good choices are
the zeros of TN+1 or UN+1, where Tn is a Chebyshev polynomial of the first kind.

4.2.2. The two-dimensional theory

The governing equations (26)–(28), obtained by the perturbation method in sec-
tion 3, can be written in the same form, which is

(H +H00)u = g, (33)

where g is a known function, which can involve solutions of lower order problems.
As a particular case, the plane disc equation (26) has an axisymmetric solution and
can be solved by reducing it to a non singular one dimensional Fredholm integral
equation of the second kind [11, eq. 7.6]. A simple numerical method can be used
for this equation; for instance a Nyström method combined with the Gauss-Legendre
quadrature rule, as employed by Martin and Farina [11]. However, as the solutions
of equations (27) and (28) are not axisymmetric, we need a more general method of
solution. We employ the expansion-collocation method used by Farina and Martin [2]
for solving an equation of the form of (33). In fact, this method does not require that
V = 1. This forcing could be any function of two variables; for instance, this could
represent an incident wave and in this way, the problem would be a scattering one.
In order to describe the expansion-collocation method, introduce cylindrical polar
coordinates (r, θ, z), so that x = r cos θ and y = r sin θ. Then, the disc is given by

D = {(r, θ, z) : 0 ≤ r < 1,−π ≤ θ < π, z = b/2} . (34)
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If we write ξ = s cosα, η = s sinα, we have

R3 = [r2 + s2 − 2rs cos (θ − α)]3/2.

Hence we can write (33) as

1

4π
×
∫

D

u(s, α)

{

1

R3
+W00(r, θ; s, α; b,K)

}

s ds dα = g(r, θ), (r, θ) ∈ D, (35)

We shall expand u using the basis functions Bm
k , defined by

Bm
k (r, θ) = Pm

m+2k+1(
√
1− r2) eimθ, k,m = 0, 1, . . . ,

where Pm
n is an associated Legendre function. The radial part of these basis functions

can also be expressed in terms of Gegenbauer polynomials.
The functions {Bm

k } are orthogonal over the unit disc with respect to the weight
(1− r2)−1/2.

The next formula, due to Krenk [9] is essential in the construction of the method:

1

4π
×
∫

S

1

R3
Bm

k (s, α) s ds dα = Cm
k

Bm
k (r, θ)√
1− r2

, (36)

where

Cm
k = −π

4

(2k + 1)!

(2m+ 2k + 1)!
[Pm+1

m+2k+1(0)]
2

Equation (36) allows us to evaluate the hypersingular integrals analytically1. To
exploit (36), we expand [φ] in terms of the functions Bm

k . For brevity, we write

[φ] = w ≈
N
∑

k,m

amk Bm
k :=

N1
∑

k=0

N2
∑

m=0

amk Bm
k . (37)

Substituting (37) in the integral equation (35) and then evaluating the hypersingular
integrals analytically using (36), we obtain

N
∑

k,m

amk

{

Cm
k

Bm
k (r, θ)√
1− r2

+
1

4π

∫

S

Bm
k (s, α)W00(r, θ; s, α; d,K) s ds dα

}

= g(r, θ),

(r, θ) ∈ D. (38)

1Another consequence of formula (36) is that the functions Bm

k
(r, θ)/

√
1− r2 can bee seen as

eigenfunctions of the integral operator H̄ defined by

H̄v(r, θ) =

∫

×
D

1

R3
v(s, α)

√

1− s2 s ds dα.
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It remains to determine the unknown coefficients amk . We use a collocation method,
in which evaluation of (38) at (N1+1)(N2+1) points on the disc gives a linear system
for the coefficients amk . For a discussion on the choice of the collocation points on
a disc and other numerical issues on the collocation-expansion method, including
its analogue for two-dimensional water wave problems, see [2]. Numerical results
showing the effectiviness of the method were presented by Ziebell and Farina [20] for
spherical caps and rough discs.

5. Discussion

We have presented a spectral method for solving a class of hypersingular equa-
tions over a nonplanar circular disc. The motivation of the problem comes from
a interaction of water waves with a submerged thin non-planar surface. By using
a boundary perturbation method, we formulate the problem in terms of sequence of
hypersingular integral equations, (H+H00)wn = gn, over a flat disc. This approach
allows the application of a efficient semi-analytical method where the solution is
expanded in terms of Gegenbauer polynomials. This is the analogue of a spectral
method used for the solutions of one-dimensional hypersingular integral equations in
terms of Chebyshev polynomials.
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Appendices

A. Expansion terms for W

W00 =

∫

∪
∞

0

k +K

k −K
e−kbk2J0(kR) dk, (39)

W01 = −(f(x, y) + f(ξ, η))

∫

∪
∞

0

k +K

k −K
e−kbk3J0(kR) dk, (40)

W02 =
1

2
(f(x, y) + f(ξ, η))2

∫

∪
∞

0

k +K

k −K
e−kbk4J0(kR) dk, (41)

W10 = −[(f1 − f 0
1 ) cosΘ + (f2 − f 0

2 ) sinΘ]

∫

∪
∞

0

k +K

k −K
k2e−kbJ1(kR) dk, (42)

W11=[(f1−f 0
1 ) cosΘ+(f2−f 0

2 ) sinΘ](f(x, y)+f(ξ, η))

∫

∪
∞

0

k +K

k −K
k3e−kbJ1(kR) dk, (43)
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W12=−1

2
[(f1−f 0

1 ) cosΘ+(f2−f 0
2 ) sinΘ](f(x, y)+f(ξ, η))2

∫

∪
∞

0

k+K

k−K
k4e−kbJ1(kR) dk,

(44)

W20 =

[

sin2 Θ

R
f1f

0
1+

cos2Θ

R
f2f

0
2−(f2f

0
1+f1f

0
2 )
sin (2Θ)

2R

]
∫

∪
∞

0

e−kbkJ1(kR)
k +K

k −K
dk

+

[

cos2Θf1f
0
1 sin

2 Θf2f
0
2 − (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

× 1

2

∫

∪
∞

0

e−kbk2(J0(kR)− J2(kR))
k +K

k −K
dk, (45)

W21 =(f(x, y) + f(ξ, η))

{[

−sin2Θ

R
f1f

0
1 − cos2Θ

R
f2f

0
2 + (f2f

0
1 + f1f

0
2 )

sin(2Θ)

2R

]

×
∫

∪
∞

0

e−kbk2J1(kR)
k +K

k −K
dk

+

[

− cos2Θf1f
0
1 − sin2Θf2f

0
2 + (f2f

0
1 + f1f

0
2 )

sin(2Θ)

2

]

× 1

2

∫

∪
∞

0

e−kbk3(J0(kR)− J2(kR))
k +K

k −K
dk

}

, (46)

W22 =
1

2
(f(x, y) + f(ξ, η))2

{[

sin2Θ

R
f1f

0
1 +

cos2 Θ

R
f2f

0
2 − (f2f

0
1 + f1f

0
2 )

sin(2Θ)

2R

]

×
∫

∪
∞

0

e−kbk3J1(kR)
k +K

k −K
dk

+

[

cos2 Θf1f
0
1 sin

2 Θf2f
0
2 − (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

× 1

2

∫

∪
∞

0

e−kbk4(J0(kR)− J2(kR))
k +K

k −K
dk

}

. (47)

B. Alternatives expressions

W01 =(f(x, y) + f(ξ, η))
[

− 2bK3(R2 + b2)−1/2

+ (2K − 2K2b)(R2 + b2)−3/2 + (9b− 6Kb2)(R2 + b2)−5/2

− 15b3(R2 + b2)−7/2 + πK4e−Kb(H0(KR) + Y0(KR))

+ 2 K3e−Kb

∫ Kb

0

et((KR)2 + t2)−1/2 dt+ 2πiK4e−KbJ0(KR)
]

, (48)
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W02 =
1

2
(f(x, y) + f(ξ, η))2

[

− 2K2(R2 + b2)−3/2 + (6K2b2 + 3Kb2 − 18b+ 5)

× (R2 + b2)−5/2 + (−75K2b4 + 30Kb3 − 15b2)(R2 + b2)−7/2

+ 105K2b6(R2 + b2)−9/2 − πK5e−Kb(H0(KR) + Y0(KR))

− 2K3e−Kb

∫ Kb

0

et((KR)2 + t2)−1/2 dt− 2πiK5e−KbJ0(X)
]

, (49)

W10 =[(f1 − f 0
1 ) cosΘ + (f2 − f 0

2 ) sin Θ](f(x, y + f(ξ, η))
[

− 2KR(R2 + b2)−3/2

− 3R(R2 + b2)−5/2 + πK3e−Kb

(

H1(KR) + Y1(KR)− 2

π

)

+ 2K4R e−Kb

∫ Kb

0

e−Kb((KR)2 + t2)−3/2 dt

− 2πiK4e−KbJ1(KR)
]

, (50)

and

W20 =

[− sin2 Θ

R
f1f

0
1 − cos2Θ

R
f2f

0
2 + (f2f

0
1 + f1f

0
2 )
sin (2Θ)

2R

] [

− R(R2 + b2)−3/2

− πK2e−Kb(H ′
0(X) + Y ′

0(X)) + 2K3e−KbR

∫ Kb

0

et((KR)2 + t2)−3/2 dt

+ 2πiK2e−KbJ1(KR)

]

+

[

− cos2Θf1f
0
1 − sin2Θf2f

0
2 + (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

[

3R(R2 + b2)−5/2 − 1

2
πK3e−Kb

(

H2(KR) + Y2(KR)−H0(KR)− Y0(KR)

− KR

2
√
π Γ(5/2)

)

+ 2K3e−Kb

∫ Kb

0

et((KR)2 + t2)−3/2 dt

− 6K3e−Kb

∫ Kb

0

et((KR)2 + t2)−5/2 dt− πiK3e−Kb(J2(KR)− J0(KR))

]

,

(51)

where Γ denotes the Gamma function.

64



References

[1] Ervin, V. J., Stephan, E. P.: Collocation with Chebyshev polynomials for a hy-
persingular integral equation on an interval. J. Comp. & Appl. Math. 43 (1992),
221–229.

[2] Farina, L., Martin, P.A.: Scattering of water waves by a submerged disc using
a hypersingular integral equation. Applied Ocean Research 20 (1998), 121–134.

[3] Farina, L.: Water wave radiation by a heaving submerged horizontal disk very
near the free surface. Physics of Fluids 22 (2010), 057102.

[4] Frenkel, A.: A Tschebyshev expansion of singular integrodifferential equations
with a ∂2 ln |s− t|/∂s ∂t kernel. J. Comp. Phys. 51 (1983), 335–342.

[5] Golberg, M.A.: The convergence of several algorithms for solving integral equa-
tions with finite-part integrals. J. Integ. Equations. 5 (1983), 329–340.

[6] Golberg, M.A.: The convergence of several algorithms for solving integral equa-
tions with finite-part integrals. II. J. Integ. Equations. 9 (1985), 267–275.
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Abstract

We derive the smoothed aggregation two-level method from the variational objec-
tive to minimize the final error after finishing the entire iteration. This contrasts to
a standard variational two-level method, where the coarse-grid correction vector is
chosen to minimize the error after coarse-grid correction procedure, which represents
merely an intermediate stage of computing. Thus, we enforce the global minimization

of the error. The method with smoothed prolongator is thus interpreted as a qualita-
tively different, and more optimal, algorithm than the standard multigrid.

1. Introduction

The smoothed aggregation method [13, 14, 15, 12] proved to be a very efficient
tool for solving various types of elliptic problems and their singular perturbations.
In this short note, we turn to the very roots of smoothed aggregation method and
derive its two-level variant on a systematic basis.

The multilevel method consists in combination of a coarse-grid correction and
smoothing. The coarse-grid correction of a standard two-level method is derived
using theA-orthogonal projection of an error to the range of the prolongator. In other
words, the coarse-grid correction vector is chosen to minimize the error after coarse-
grid correction procedure. This means, the standard two-level method minimizes the
error in an intermediate stage of the iteration, while we are, naturally, interested in
minimizing the final error after accomplishing the entire iteration. In other words, we
strive to minimize the error after coarse-grid correction and subsequent smoothing.
The two-level smoothed aggregation method is obtained by solving this minimization
problem. This, in the opinion of the authors, explains its remarkable robustness.

We derive the two-level smoothed aggregation method from the variational objec-
tive to minimize the error after coarse-grid correction and subsequent post-smoothing.
Then, by a trivial argument, we extend our result to the two-level method with pre-
smoothing, coarse-grid correction and post-smoothing.
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The minimization of error after coarse-grid correction and subsequent smooth-
ing leads to a method with smoothed prolongator. We can say that by smoothing
the prolongator, we adapt the coarse-space (the range of the prolongator) to the
post-smoother so that the resulting iteration is as efficient as possible. Our short
explanation applies to any two-level method with smoothed prolongator. The partic-
ular case we have in mind is, however, a method with smoothed tentative prolongator
given by generalized unknowns aggregations [15]. The discrete basis functions of the
coarse-space (the columns of the prolongator) given by unknowns aggregations have
no overlap; the natural overlap of discrete basis functions (like it is in the case of
finite element basis functions) is created by smoothing and, for additive point-wise
smoothers, leads to sparse coarse-level matrix.

Our argument is basically trivial. It, however, shows a fundamental property of
the method with smoothed prolongator, that is essential. This argument is known
to the authors for a long time, but has never been published.

We conclude our paper by a numerical test. Namely, we demonstrate experimen-
tally that smoothed aggregation method with powerful smoother and small coarse-
space solves efficiently highly anisotropic problems without the need to perform semi-
coarsening (the coarsening that follows only strong connections).

2. Two-level method

We solve a system of linear algebraic equations

Ax = f , (1)

where A is a symmetric positive definite matrix of order n and f ∈ IRn. We assume
that an injective linear prolongator p : IRm → IRn, m < n is given.

The two-level method consists in the combination of a coarse-grid correction
and smoothing. The smoothing means using point-wise iterative methods at the
beginning and at the end of the iteration. The coarse-grid correction is derived by
correcting an error e by a coarse-level vector v so that the resulting error e− pv is
minimal in A-norm. In other words, we solve the minimization problem

find v ∈ IRm so that ‖e− pv‖A is minimal. (2)

It is well-known that such vector pv is an A-orthogonal projection of the error e onto
Range(p), with the projection operator given by

Q = p(pTAp)−1pTA.

Thus, the error propagation opeartor of the coarse-grid correction is given by I−Q =
I − p(pTAp)−1pTA and the error propagation operator of the two-level method by

ETGM = Spost[I − p(pTAp)−1pTA]Spre, (3)
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where Spre and Spost are error propagation operators of pre- and post- smoothing
iterations, respectively.

Clearly, for the error e(x) ≡ x − A−1f we have Ae(x) = Ax − f . Hence, the
coarse-grid correction can be algorithmized as

x← x− p(pTAp)−1pT (Ax− f)

and the variational two-level algorithm with post-smoothing step proceeds as follows:

Algorithm 1

1. Pre-smooth: x← Spre(x, f),

2. evaluate the residual: d = Ax− f ,

3. restrict the residual: d2 = pTd,

4. solve a coarse-level problem A2v = d2, A2 = pTAp,

5. correct the approximation x = x− pv,

6. post-smooth x = Spost(x, f).

Here, Spre(., .) and Spost(., .), respectively, represent one or more iterations of point-
wise iterative methods for solving (1).

The coarse-grid correction vector v is chosen to minimize the error after Step 5 of
Algorithm 1. Thus, we conclude that in the case of a standard variational multigrid,
the coarse-grid correction procedure minimizes the error in an intermediate stage
of the iteration, while we are in fact interested in minimizing the final error after
accomplishing the entire iteration. This means to minimize the error after coarse-grid
correction with subsequent smoothing.

3. The smoothed aggregation two-level method

In the smoothed aggregation method, we construct the coarse-grid correction
to minimize the error after coarse-grid correction with subsequent smoothing, which
means the final error on the exit of the iteration procedure. The minimization of the
error after pre-smoothing, coarse-grid correction and post-smoothing then follows
immediately by a trivial argument.

Let S be the error propagation operator of the post-smoother S(., .) = Spost(., .).
Throughout this section we assume that S is sparse. This is due to the fact that
the above minimization problem leads to smoothed prolongator P = Sp and we
need a sparse coarse-level matrix A2 = P TAP . The additive point-wise smoothing
methods have, in general, sparse error propagation operator; this is the case of Jacobi
method or Richardson’s iteration.
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For a multilevel method with post-smoothing only, the error after coarse-grid
correction and subsequent smoothing is given by

S(e− pv), (4)

where v is a correction vector and e the error on the entry of the iteration procedure.
We choose v so that the error in (4) is minimal in A-norm, that is, we solve the
minimization problem

find v ∈ IRm such that ‖S(e− pv)‖A is minimal. (5)

Since ‖S(e− pv)‖A = ‖e− pv‖STAS, the minimum is attained for v satisfying

〈STAS(e− pv), pw〉 = 0 ∀w ∈ IRm.

We have 〈STAS(e − pv), pw〉 = 〈pTSTAS(e − pv),w〉, hence the above identity is
equivalent to pTSTASpv = pTSTASe and setting P = Sp, it becomes

P TAPv = P TASe. (6)

Here, e is the error on the entry of the iteration procedure. Assume for now that
P is injective. Then by (6), we have v = (P TAP )−1P TASe and the error after
coarse-grid correction and subsequent smoothing is given by

S(e− pv) = S
[

e− p(P TAP )−1P TASe
]

=
[

I − P (P TAP )−1P TA
]

Se. (7)

By comparing the operator

E =
[

I − P (P TAP )−1P TA
]

S (8)

on the right-hand side of (7) with (3), we identify E as the error propagation operator
of the variational multigrid with smoothed prolongator P = Sp and pre-smoothing
step given by x← S(x, f). The algorithm is as follows:

Algorithm 2

1. Pre-smooth: x← S(x, f),
2. evaluate the residual: d = Ax− f ,

3. restrict the residual: d2 = P Td,

4. solve the coarse-level problem: A2v = d2, A2 = P TAP ,

5. correct the approximation: x← x− Pv.

Remark 3.1 Note that in the process of the deriving the algorithm in (7), our
post-smoother have become a pre-smoother. Nothing was lost in that process; the
algorithm minimizes the final error and takes into account the pre-smoother.
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Remark 3.2 The smoothed prolongator P = Sp is potentially non-injective, hence
the coarse-level matrix A2 = P TAP is potentially singular. In this case, we need to
replace the inverse of P TAP in (7) by a pseudo-inverse.

We summarize our considerations in the form of a theorem.

Theorem 3.3 The error propagation operator E in (8) (the error propagation opera-
tor of Algorithm 2) satisfies the identity

‖Ee‖A = inf
v∈IRm

‖S(e− pv)‖A

for all e ∈ IRn.

Proof. The proof follows directly from the fact that Algorithm 2 was derived
from variational objective (5).

Remark 3.4 One may also start with the variational objective to minimize the
final error after performing the pre-smoothing, the coarse-grid correction and the
post-smoothing. Such extension is trivial, the pre-smoother has no influence on the
coarse-grid correction operator I − P (P TAP )−1P TA and influences only its argu-
ment. Indeed, asuming the error propagation operator of the pre-smoother is S∗

(the A-adjoint operator), the final error is given by S(S∗e − pv) and we solve the
minimization problem

for e ∈ IRn find v ∈ IRm : ‖S(S∗e− pv)‖A is minimal. (9)

Fundamentally, this is the same minimization problem as (5); to derive the cor-
responding algorithm, it is simply sufficient to follow our manipulations from (5)
to (7) with e ← S∗e. This way, we end up with a two-level method that has the
error propagation operator

E =
[

I − P (P TAP )−1P TA
]

SS∗, (10)

(see (3)) that is, with the algorithm

Algorithm 3

1. Pre-smooth: x← St(x, f), where St is an iterative method with error propaga-
tion operator S∗,

2. pre-smooth: x← S(x, f), where S is an iterative method with error propagation
operator S,

3. evaluate the residual: d = Ax− f ,

4. restrict the residual: d2 = P Td,

5. solve the coarse-level problem: A2v = d2, A2 = P TAP ,

6. correct the approximation: x← x− Pv.

We summarize the content of Remark 3.4 as a theorem.
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Theorem 3.5 The error propagation operator (10) of Algorithm 3 satisfies the iden-
tity

‖Ee‖A = inf
v∈IRm

‖S(S∗e− pv)‖A
for all e ∈ IRn.

Proof. The proof follows directly from the fact that Algorithm 3 was derived
from variational objective (9).

Remark 3.6 Our manipulations hold equally for a general pre-smoother with error
propagation operator M 6= S∗, simply by replacing S∗ ←M . The error propagation
operator M has no influence on the coarse-space and thus it does not have to be
sparse.

4. Numerical example

To demonstrate the robustness of smoothed aggregation method, we consider
the algorithm of [6] which is a modification of the method proposed and analyzed
in [8] and [10]. Its relationship to Algorithm 2 is obvious. This method uses the
smoothing iterative method S(·, ·) which is a sequence of Richardson’s iterations
with carefully chosen iteration parameters. The error propagation operator S of the
smoother S(·, ·) is therefore a polynomial in the matrix A.

In this method, we use massive smoother S and a small coarse-space resulting in
sparse coarse-level matrix.

Let λ̄ ≥ ̺(A) and d be the desired degree of the smoothing polynomial S. We
set

αi =

[

λ̄

2

(

1− cos
2iπ

2d+ 1

)

]−1

, i = 1, . . . , d, (11)

S = (I − α1A) . . . (I − αdA) (12)

and
P = Sp.

Here, p is a tentative prolongator given by generalized unknowns aggregation. The
simplest aggregation method is described in this section.

The smoother S is chosen to minimize ̺(S2A). The reason for this comes from
the fact that the convergence of the method of [6] is guided by the constant C in the
weak approximation condition

∀e ∈ IRn ∃v ∈ IRm : ‖e− pv‖ ≤ C
√

̺(S2A)
‖e‖A. (13)

The smaller ̺(S2A), the easier it becomes to satisfy (13) with a reasonable (suffi-
ciently small) constant. It holds that ([6])

λ̄S2A ≡
λ̄

(1 + 2d)2
≥ ̺(S2A). (14)
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The aggregates {Aj} are sets of fine-level degrees of freedom that form a disjoint
covering of the set of all fine-level degrees of freedom. For example, we can choose
aggregates to form a decomposition of the set of degrees of freedom induced by
a geometrically reasonable partitioning of the computational domain. For standard
discretizations of scalar elliptic problems, the tentative prolongator matrix p is the
n×m matrix (m = the number of aggregates)

pij =

{

1 if i ∈ Aj,
0 otherwise,

(15)

that is, the j-th column is created by restricting a vector of ones onto the j-th aggre-
gate, with zeroes elsewhere. Thus, the aggregation method can be viewed as a piece-
wise constant coarsening in a discrete sense. The generalized aggregation method,
suitable for non-scalar elliptic problems (like that of linear elasticity), is described
in [15].

Algorithm 4 Given the degree d of the smoothing polynomial S = pol(A), the
smoothed prolongator P = Sp where p is the tentative prolongator and the pro-
longator smoother S is given by (12), the upper bound λ̄ ≥ ̺(A) and a parameter
ω ∈ (0, 1), one iteration of the two-level algorithm

x← TG(x, f)

proceeds as follows:

1. perform

x← x− ω

λ̄S2A

S2(Ax− f),

where λ̄S2A is given by (14) and S by (12),

2. perform the iteration with symmetric error propagation operator S given by (12),
that is,
for i = 1, . . . , d do

x← (I − αiA)x+ αif ,

3. evaluate the residual d = Ax− f ,

4. restrict the residual d2 = P Td,

5. solve the coarse-level problem A2v = d2, A2 = P TAP ,

6. correct the approximation x← x− Pv,

7. for i = 1, . . . , d do
x← (I − αiA)x+ αif ,

8. perform

x← x− ω

λ̄S2A

S2(Ax− f).
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512 000 dofs, coarse space 512 dofs, deg(S) = 7, H/h = 9.
ε rate of conv. qN no. iter. N

1000 0.321 19
100 0.241 15
10 0.137 11
1 0.131 11
0.1 0.221 14
0.01 0.317 19
0.001 0.300 18

Table 1: 3D anisotropic problem

Thus, Algorithm 4 is a symmetrized version of Algorithm 2 with added smoothing
in steps 1 and 8.

It is generally believed that in order to solve efficiently an anisotropic problem,
one has to perform coarsening only by following strong connections. This technique
is called semi-coarsening. In our case, we form aggregates by coarsening by a factor
of 10 in all 3 spatial directions, which means, we do not perform semi-coarsening.
Despite of this fact, our method gives satisfactory results regardless of the anisotropy
coefficient ε. In this experiment, the symmetric Algorithm 4 is used as a conjugate
gradient method preconditioner.

Test problem

• Problem:

−
(

∂2

∂x2
+ ε

∂2

∂y2
+

∂2

∂z2

)

u = f on Ω = (0, 1)3, u = 0 on ∂Ω. (16)

• Mesh: 82 × 82 × 82 regular square mesh, 512 000 unconstrained degrees of
freedom.

• Aggregates: cubic groups of 10× 10× 10 unconstrained vertices.

• Coarse-space size: 512 degrees of freedom.

• Degree of smoothing polynomial: 7.

• Stopping criterion: relative residual < 10−9.

The results are summed up in Table 1. Note that here, the estimate of the rate
of convergence after N iterations is defined as

qN =
(

‖AxN − f‖/‖Ax0 − f‖
)

1

N .

Here, xi denotes the i-th iteration.
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Abstract

Using the interplay among three simple exchange games, one may give a sat-
isfactory representation of a conservative economic system where total wealth and
number of agents do not change in time. With these games it is possible to investi-
gate the emergence of statistical equilibrium in a simple pure-exchange environment.
The exchange dynamics is composed of three mechanisms: a decentralized interaction,
which mimics the pair-wise exchange of wealth between two economic agents, a failure
mechanism, which takes into account occasional failures of agents and includes wealth
redistribution favoring richer agents, and a centralized mechanism, which describes
the result of a redistributive effort. According to the interplay between these three
mechanisms, their relative strength, as well as the details of redistribution, different
outcomes are possible.

...But Mr. Lebeziatnikov who keeps up with modern ideas explained
the other day that compassion is forbidden nowadays by science itself,
and that that’s what is done now in England, where there is political
economy...

Crime and Punishment, Chapter 1, Fyodor Dostoevsky

1. Introductory considerations

In economics, distributional problems emerge in contexts of economic growth and
allocation of resources, among others. Distributions of relevant economic variables
are important for policy making purposes, however, there is a general policy problem
that was emphasized by Federico Caffè [1]:
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...when, in economic reasoning, the social wealth distribution is assumed
‘given’, this means that the existing distribution is accepted, without
evaluating whether it is good or bad, acceptable or unacceptable... this
must be explicitly done further clarifying that the conclusions are condi-
tioned on the acceptability of the distributional set-up.

In the past, we have studied simple exchange mechanisms (games) based on exact
probabilistic dynamics and leading to statistical equilibrium distributions [3, 4, 5, 7].
Our aim is to give a satisfactory representation of an economy and investigate the
statistical equilibrium by means of interplay between these mechanisms. One of them
describes centralized activities in terms of taxation and redistribution of wealth and
it produces exponential tails. In order to include a process that gives power-law
tails we involve a mechanism consisting of occasional failures of agents together
with redistribution of their wealth. This mechanism is discussed in [3], Chapter 10,
and it leads to the Yule distribution, which was originally proposed by Yule to
account for the data on biological species [10]. It was the idea of Simon to use it in
order to describe a class of distributions that appears in a wide range of empirical
data, including economic phenomena [8]. The last but crucial mechanism represents
pairwise exchange of wealth between agents and its interplay ensures that the system
does not break down due to the failures of agents.

Since it is difficult to study the interplay of the three games analytically, we want
to develop a statistical procedure based on statistical inference from the data to ob-
tain relevant distributional properties of economic variables. In particular, we focus
on the wealth distribution. However, here the emphasis will be on modelling and
studying the aggregate wealth distribution in a conservative system where the num-
ber of agents and the total wealth do not change in time. For a simple trading rule in
an active market, where number of agents and money is not conserved, Kusmartsev
found that the wealth distribution has a general Bose-Einstein form, whose param-
eters depend on wealth exchange parameter, i.e. activity of agents [6]. Regarding
conservation of wealth in the system, as pointed out in [9], ordinary agents in an
economy can only exchange money with each other, so there is a local conservation
of wealth. However, a government or a central bank can cause a change of wealth,
but as long as it does not cause hyperinflation, the system can be close to statistical
equilibrium, with slowly changing parameters.

1.1. Descriptions for the state of the system

The basic random variables for the description of the games are introduced in [3].
A general framework for agent-based models consists of the allocation of n objects
among g agents (categories). Categories represent economic agents and objects may
represent money or wealth. In this paper objects will be called coins.

The most complete description of the states is in terms of individual (coin) con-
figurations X. An individual description X = (X1 = x1, X2 = x2, . . . , Xn = xn),
where xi ∈ {1, . . . , g}, is a list telling us, for each coin to which agent it belongs.
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The total number of configurations for n coins distributed among g agents is gn.
A statistical description Y = (Y1 = n1, Y2 = n2, . . . , Yg = ng) is a list giving us the
number of coins for each agent, with the constraint

∑g
1 ni = n. The total number

of these agent descriptions for g agents sharing n coins is
(
n+g−1

n

)
. A partition de-

scription Z = (Z0 = z0, Z1 = z1, . . . , Zn = zn) is the number of agents with zero
coins, one coin, etc., with the constraints for Z

∑n
0 zi = g,

∑n
0 izi = n. This is the

less complete description, commonly referred to as wealth distribution and it will be
mostly used throughout this paper. Figure 1 shows a state of a system and illustrates
the meaning of the various descriptions.

1 2 3 4 5 6 7 8 9 10

1 52 3

4

7

6

Figure 1: A state of a system with ten agents and seven coins. The individual
description of the state is x1 = 8, x2 = 3, x3 = 5, . . . , x7 = 8. The statistical
description is y1 = y2 = y4 = y6 = y7 = y9 = 0, y3 = y10 = 1, y5 = 2, y8 = 3 and
the wealth distribution in this case is z0 = 6, z1 = 2, z2 = 1, z3 = 1, z4 = z5 = z6 =
z7 = 0.

2. Simple exchange games

2.1. Random coin exchange (Bennati-Drăgulescu-Yakovenko)

Bennati-Drăgulescu-Yakovenko (BDY) model was introduced in Bennati’s
work (1988, 1993) and rediscovered in [2]. Later it was studied in [7]. It is a discrete
model, where number of agents and wealth measured by coins are conserved. The
BDY game is played as follows. In the system of g agents sharing n coins, at each time
step, two agents are randomly selected. The selection is such that each pair of agents
has equal probability to be chosen. One of the agents (randomly chosen) becomes
the loser and gives one coin to the other, who becomes the winner. Indebtedness
is not possible, i.e. if the loser has zero coins, the move is not taken into account
and a new pair of players is selected. In order to avoid null moves, the game can be
formulated in the following way – a loser is chosen randomly from the agents who
have at least one coin and the winner is chosen among all agents, randomly as well.
In case the loser and the winner coincide, there will be no change in the state of the
system.

The appropriate description of the system is the statistical description, in terms
of agents. Let assume that at a given time t, the agents are described by the state
Yt = (n1, ..., ng) : = n and at the next step by the Yt+1 = (n1, ..., ni − 1, ...,
nj + 1, .., ng) := nj

i , that corresponds to a loss of the agent i and a win of the agent j.
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The transition between these states follows a homogenous Markov dynamics with
transition probability:

P(nj
i |n) =

1− δni,0

g − z0(n)

1

g
, (1)

where δni,0 is the usual Kronecker’s delta equal to 1 for ni = 0 and zero otherwise.
The first part is the probability of selecting a loser (agent i) from all agents with at
least one coin and the second part (1/g) is the probability that the agent j is the
winner. The sequence Y0,Y1, . . . is a finite Markov chain with irreducible set of
states and no periodicity. Therefore, an invariant probability distribution exists and
it coincides with the equilibrium distribution. Its form is the following:

π(n) = C · (g − z0(n)), C =

[
g∑

k=1

(
g

k

)(
n− 1

n− k

)]−1
(2)

and it can be derived by means of detailed balance given that the chain is reversible.
The exact solution of this problem is not as simple as it appears in [2]. One can
see that the invariant probability distribution for this model depends on number of
agents with zero coins (z0); more precisely it is proportional to the number of agents
with at least one coin in their pocket, and hence, it is not uniform.

At the beginning of each simulation in this paper n/g coins are given to the
each agent, i.e. the initial wealth distribution is a Dirac delta, δ(n/g − i) for i =
0, 1, . . . ,. Results of simulations present expected wealth distributions, given in terms
of partition vector Z = (Z0, Z1, . . . , Zn), namely time means of relative frequencies
of agents with i coins, that approximate E(Zi)/g.

Figure 2 shows the expected wealth distribution in the system with dynam-
ics given by the BDY game. Time means of relative frequencies of agents with
0, 1, . . . , 500 coins obtained from simulations are compared with theoretical expected
wealth distribution given by exact formulas and with exponential distribution, which
is the distribution in the limit of large density and large number of agents (n�g�1).
A detailed derivation of the expected wealth distribution can be found in [7] and in
general, it is not exponential – it becomes exponential only in the appropriate limit.
Therefore, conclusions from [2] on exponential wealth distribution are not fully cor-
rect if one considers equation (2).

2.2. Taxation and redistribution

The second exchange game mimics taxation and redistribution in a simplified
way. The taxation-redistribution model was introduced in [4]. There are still n coins
to be allocated among g agents and n and g are conserved in time.

The simplest form of this game consists in taking a coin from one agent and
redistributing it to another agent. Taxation is represented by a step where a coin is
taken from an agent and temporarily removed from the population, so the state of
the system is

ni := (n1, ..., ni − 1, ..., ng).
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Figure 2: Time mean of relative frequencies of g = 10 agents sharing n = 500 coins
obtained from simulation of the BDY game (stars) compared with theoretical values
for expected wealth distribution (dashed line) and with distribution in the limit of
large systems, Exp(g/n) (line), shown in linear (up) and logarithmic scale (down).
The values of the random variables Zt were sampled and averaged over 105 of Monte
Carlo steps, after an equilibration of 104 steps.

By redistribution, one means a step where a coin is given back to an agent, i.e.

nj := (n1, ..., nj + 1, ..., ng).

If the system is in the state Yt = (n1, ..., ng) := n, at the next step of this game,
possible values of Yt+1 will be Yt+1 = (n1, ..., ni − 1, ..., nj + 1, .., ng) := nj

i , corre-
sponding to a loss of the ith agent due to taxation and a gain of the jth agent due
to redistribution. The transition probability between these states is:

P(nj
i |n) =

ni

n

αj + nj − δi,j
θ + n− 1

, (3)

where (α1, ..., αg) are weights for redistribution and θ =
∑

j αj. Taxation consists
of random selection of a coin, in opposition to the BDY move where the selection
refers to agents. If a coin is randomly selected out of n coins, the probability of
selecting a coin belonging to the agent i is ni/n, where ni is the number of coins of
the agent i. Hence, the agents are taxed proportionally to their wealth. Then, this
coin is redistributed to the agents following the rule that the jth agent will receive
a coin with probability proportional to αj + nj, where nj is the number of coins of
the agent j and αj is a suitable weight. The redistribution policy is determined by
the values of αj. Positive values make rich agents richer, and the effect is larger the
smaller is αj, αj →∞ determines a redistribution where all agents are equivalent, so
the redistribution mechanism becomes random, whereas negative values of αj tend
to favor poor agents.
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Equation (3) defines the transition probability matrix of an irreducible Markov
chain which is also aperiodic. Hence, there exists an invariant probability distribu-
tion, which coincides with the equilibrium distribution. In this case it is the Pólya
distribution:

π(n) =
n!

θ[n]

g∏
i=1

α
[ni]
i

ni!
(4)

and it can be derived by means of detailed balance given that the chain is reversible.
x[n] is the Pochhammer symbol representing the rising (or upper) factorial defined
by x[n] = x(x+ 1)...(x+ n− 1).

Let us suppose that αj = α for all j. Depending on the choice of α, one can
obtain different equilibrium situations. Marginalizing equation (4) for a single agent
(all the agents follow the same probability distribution) in the continuous limit of
large systems, for α positive, the taxation and redistribution model is approximately
described by the gamma distribution (see [3], Chapter 5), whose form factor is just
the initial redistribution weight. If α is negative, then the limiting distribution is the
hypergeometric distribution and in the case α → ∞ it is the Poisson distribution.
Note that in the case of equidistributed agents, one has that E(Zi) = gP(Y1 = i);
in other words, the knowledge of the marginal occupation distribution immediately
gives the expected wealth distribution.

Instead of taxation and redistribution of only one coin at each time step, we
will consider block taxation in which m ≤ n coins are randomly taken from agents
and then redistributed according to the same probability, i.e. proportionally to the
actual wealth of agents and the chosen weight for redistribution. Block taxation can
be written in the following way

n′ = n−m + m′, (5)

where n = (n1, . . . , ng) is the initial agent description, m = (m1, . . . ,mg) is the tax-
ation vector and m′ = (m′1, . . . ,m

′
g) is the redistribution vector, with the constraints∑g

i=1mi = m and
∑g

j=1m
′
j = m. This leads to the same equilibrium distribution,

given by the equation (4).

Figure 3 presents the expected wealth distribution in the system with dynamics
governed by the taxation and redistribution game. It shows time mean of relative fre-
quencies of agents with 0, 1, . . . , 500 coins obtained from simulations, compared with
theoretical values for the expected wealth distribution and with gamma distribution
which is the distribution in the continuous limit of large systems.

2.3. Zipf-Simon-Yule

The third important game is the Zipf-Simon-Yule one, initially described in [5]. In
order to consider a system that is conservative, in terms of total wealth and number
of agents, as in previous two games, we will modify the given Zipf-Simon-Yule model.
This game includes a failure probability, which is independent of agents’ wealth. An
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Figure 3: Expected wealth distribution in a system of g=10 agents and n=500 coins
for the 250-block taxation and redistribution game with redistribution weight α = 10.
Time mean of relative frequencies of agents with i coins obtained from simulation
(stars) are compared with theoretical expected wealth distribution (dashed line) and
with distribution in the limit of large systems, Gamma(α, n/αg) (line), in linear (up)
and logarithmic scale (down). Values from simulation were sampled and averaged
over 105 Monte Carlo steps, after an equilibration of 104 steps.

agent with coins is randomly selected and all his coins are removed. Therefore, the
probability of failure for the ith agent is:

P(n(i)|n) =
1

g − z0(n)
1{ni>0}, (6)

where n(i) = (n1, . . . , 0, . . . , ng) is an agent description vector with a zero element on
the ith position. The wealth of the failed agent is then redistributed to the agents
with probability proportional to their actual wealth, but the last coin is given back to
the failed agent. This move can be regarded as a sort of “compassionate capitalism”.
This is a trick to avoid absorbing states; without this move a failed agent should be
cancelled out forever, and after g moves the process would stop. If we assume that
the ith agent had m coins that are removed, then the probabilities for redistributing
each of those m coins are the following:

P(X1 = j|n(i)) =
nj

n−m ,
...

P(Xs+1 = j|n(i), j1, . . . , js) =
n
′
j

n−m+s
,

...
P(Xm = j|n(i), j1, . . . , jm−1) = δj,i .

(7)
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Figure 4: Expected wealth distribution in a system of g=100 agents sharing n=500
coins, shown in linear (up) and logarithmic scale (down). Stars represent the time
mean of relative frequencies of agents with i coins obtained from simulation of the
ZSY game, sampled and averaged over 104 Monte Carlo steps, after an equilibration
of 104 steps. Circles represent the Yule distribution with parameter ρ ≈ 1.

The sequence Y0,Y1, . . . ,Yn, . . . is a finite Markov chain with an irreducible set
of states and no periodicity. Therefore, the invariant and equilibrium distribution
exists, but it is not easy to find, because the chain is irreversible, and one cannot
apply detailed balance.

The described mechanism alone produces power-law tails. Figure 4 presents the
expected wealth distribution obtained from simulation of this game and fitted with
a Yule distribution, which is the discrete counterpart of the Pareto distribution and
has the following form

P(U = i) = ρB(i, ρ+ 1) for i ∈ N, ρ ∈ R+ ,

where U denotes a random variable and B is the Beta function.

3. “Super-moves”

In the case of the first two models (BDY and TAR), computer simulations are not
really necessary because the equilibrium distributions can be analytically derived. On
the contrary, they are necessary in the case of the Zipf-Simon-Yule model. However
they are necessary if one thinks of a system where two or three games are played
sequentially.

In order to know what is the shape of the expected wealth distribution in the
equilibrium state in the long-term limit of an economy, we perform Markov chain
Monte Carlo simulations for various combinations of three games described in pre-
vious section.
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Figure 5: Expected wealth distribution in a system of 10 agents sharing 500 coins
for the mixture of the two games. (a) One step consists of l = 50 steps of BDY game
and one step of 250-block TAR game with redistribution weight α = 10. (b) One
step consists of one step of ZSY game and l = 10, l = 50, l = 100 steps of BDY game.
Time mean of relative frequencies of agents with i coins obtained from simulations
of two games are compared with distribution from pure BDY and TAR games (a)
and BDY and ZSY games (b). Values from simulation were sampled and averaged
over 104 Monte Carlo steps, after an equilibration of 104 steps.

Let us first consider an alternation of the BDY and TAR game. Suppose that the
BDY game is played l times and then one step of the TAR game is performed. The
first game shifts the initial expected wealth distribution towards an exponential, and
such a distribution becomes the initial one for the second game. Then, the second
game shifts the distribution towards a gamma and these steps can be iterated many
times. One can guess that the equilibrium distribution of the joint process will be
a mixture of the two pure ones, with weights proportional to the frequency of the two
processes. This conjecture is qualitatively corroborated in figure 5 for alternating the
BDY and TAR games (a) and also for alternating ZSY and BDY games (b), where
the resulting expected wealth distribution is compared with distributions from pure
games.

In order to mimic what happens in a real economy, we will use the following
combination of steps. On each “day” we run a move of BDY, at the end of each
“month=l days” we have a ZSY failure, at the end of each “year=k months” we run
a TAR, i.e. taxation and redistribution of the coins. After the failure of an agent,
modeled by the ZSY game, we have l iterations of coin exchanges between agents,
a process giving to the failed agent the opportunity to recover some wealth; in this
way the “compassionate capitalism” mechanism can be avoided. These random coin
exchanges give the background noise of the economy. Once per year taxation and
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Figure 6: Expected wealth distribution in the system for the mixture of the three
games described by the equation (8) with l = 100 and k = 10. Time mean of relative
frequencies of 10 agents sharing 500 coins sampled and averaged over 103 realizations
of 500 Monte Carlo steps and different redistribution parameter α = 1 (dots), α = 10
(circles) and α = 106 (stars).

redistribution of the coins appear as centralized mechanisms depending on weights
which characterize the redistribution policy. In summary, the “super-move” for the
mixture of the three games at time step t (the last “day” of each “year”) can be
presented as

Pt = (P(Y1,t = ·), . . . ,P(Yg,t = ·)) = Pt−1 · ((BDY l · ZSY )k · TAR), t = 1, 2, ... (8)

and (BDY l · ZSY )k · TAR is the stochastic matrix for an irreducible, aperiodic
Markov chain representing the described alternation of the three games.

Figure 6 shows the resulting expected wealth distribution in the system with
dynamics given by the equation (8). Details of the simulations can be found in the
caption.

4. Summary and outlook

In this paper we proposed a representation of a conservative economic system,
where total wealth and number of agents do not change, using the interplay among
three games, previously described separately. The exchange dynamics in the system
is composed of pair-wise interactions between economic agents, a mechanism for
occasional failures of agents including redistribution of their wealth and a centralized
mechanism, which presents redistribution policy. Depending on the relative strength
of these mechanisms, the nature of the interplay between them, the specification of
redistribution, various outcomes are possible.

The presented model is general enough to be applied to the description of both
aggregate wealth distribution, and to the distribution of firm sizes. It can be extended

86



in several directions. One can take into account a heterogeneous population of agents
and investigate the presence of asymmetry in the initial endowments on the long run
dynamics of the model. This case becomes relevant when one wants to describe the
aggregate effect of a policy switch between different redistributive regimes. Another
extension could include saving propensity and analyze the resulting distributional
properties. Even random failures can be easily taken into account. Future work will
investigate the correspondence of the model with real data. There is only one proba-
bilistic parameter, namely α, the weight of the redistribution policy, to be estimated.
Other parameters, such as l and k are to be considered fully phenomenological.
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Abstract

We study a numerical method for the diffusion of an age-structured population
in a spatial environment. We extend the method proposed in [2] for linear diffusion
problem, to the nonlinear case, where the diffusion coefficients depend on the total
population. We integrate separately the age and time variables by finite differences
and we discretize the space variable by finite elements. We provide stability and
convergence results and we illustrate our approach with some numerical result.

1. Introduction

The mathematical problem describing the spatial dispersal of an age-structured
population in a region Ω consists in a reaction-diffusion equation for the population
density, together with a given initial condition, an integral condition at age a = 0,
giving the newborns rate, and boundary conditions on ∂Ω depending on specific
features of the population and of the environment. An almost complete review
of the results concerning existence, uniqueness and asymptotic behaviour of the
solution of age-structured diffusion models can be found in the book by A. Okubo
and S. A. Levin ([10], Sec.10.8).

The earliest age-structured models did not include a spatial distribution of the
population density (see e.g. [5]). Under the hypothesis of space homogeneity, the
problem reduces to a pure first order hyperbolic partial differential equation, which
was naturally solved by integration along characteristics in age and time (see for
instance [6, 7, 9]). This integration method entails the use of the same discretization
step in age and time. However, the presence of different time scales in the dynamics
(which is typically the case when space is involved) suggests the use of different
steps in the discretization of time and age. This was the approach followed by
A. de Roos in [3], and B. Ayati et al. in [1], where an approximation space in age
is built by discontinuous piecewise polynomials moving along characteristic lines.
In [2] a new approach was introduced for the linear diffusion case, where the age and
time variables are decoupled and discretized separately by finite differences, while
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the space variable is discretized by finite elements. The problem is advanced in time
by semi-implicit scheme, while a parabolic problem in age and space is solved within
the single time step.

In plenty of application of practical interest, the diffusion coefficient depends on
the total population itself, and the associated problem is nonlinear (see, e.g. [8]). In
this paper we present the extension of the method introduced in [2] to the case of
nonlinear diffusion coefficients.

The paper is organized as follows. In Section 2 we describe the nonlinear model
we are dealing with. In Sections 3 through 5 we present the finite dimensional
approximation, and in Section 6 we outline the algorithmic aspects of the procedure.
In Section 7 we state the stability and convergence analysis of the method, and in
Section 8 we present some numerical results to illustrate our method.

2. Setting of the problem

We consider an age-structured population diffusing in a bounded spatial domain
Ω ⊂ Rd, d = 1, 2, 3, with boundary ∂Ω ∈ C2. We denote by ρ(t, a, x) the density
per unit space and age of the population at time t, where a ∈ [0, a†] and x ∈ Ω. The
population at time t in a given location x ∈ Ω, and the total population at time t
are thus given by

p(t, x) =

∫ a†

0

ρ(t, a, x) da, P (t) =

∫
Ω

p(t, x) dx. (1)

We assume the diffusion process to be density- and age-driven, namely the diffusion
coefficient in (t, x) depends on the population p(t, x) at the corresponding location
in space and time, and on the age of the individuals.

Given a final time T > 0, the population density ρ(t, a, x) ∈ C(0, T ;L2

(0, a†;H
1(Ω))) satisfies the nonlinear model problem

ρt + ρa − div (k(p(t, x), a)∇ρ) = f(t, x)− µ(a) ρ in (0, T )× (0, a†)× Ω ,

ρ(0, a, x) = ρ0(a, x) in (0, a†)× Ω ,

ρ(t, 0, x) =

∫ a†

0

β(a) ρ(t, a, x) da in (0, T )× Ω ,

k(p(t, x))n · ∇p = 0 on (0, T )× (0, a†)× ∂Ω ,

(2)

where p(t, x) is given in (1), the operators div(·) and∇(·) are the standard divergence
and gradient operators in Ω, and ~n is the unit vector normal to ∂Ω pointing outwards.

The coefficients µ(a) and β(a) represent the age-specific mortality and the age-
specific fertility, respectively, which are supposed to be non-negative functions of age
only. In (2), ρ0 is the given non-negative initial age distribution, while the integral
condition is the so-called renewal condition, providing the newborns rate. Finally, we
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consider an isolated environment by choosing a zero-flux boundary condition, which
reflects the absence of both immigration and emigration, but other boundary con-
ditions can be considered as well (for instance, an homogeneous Dirichlet boundary
condition would model an hostile habitat at the boundary of Ω). We refer to [10] for
issues concerning existence and uniqueness of a nonnegative solution of (2).

We impose standard conditions on the diffusion coefficient to ensure ellipticity of
the associated bilinear form.

k ∈ L∞(R+ × (0, a†)), 0 < k0 ≤ k(p, a) ≤ k+, (3)

and we assume that the age-specific fertility β(·) is measurable and essentialy bounded,
namely there exists a constant β+ such that

0 ≤ β(a) ≤ β+. (4)

Finally, we assume the age-specific mortality µ(·) to be a measurable function, sat-
isfying ∫ a†

0

µ(σ)dσ = +∞, (5)

in order to guarantee that the probability for an individual to survive at age a, which
is defined as

π(a) = exp

(
−
∫ a

0

µ(σ)dσ

)
, (6)

vanishes at the maximum age a†. The numerical issues arising from the unbounded
coefficient µ(a) can be avoided by performing a standard change of variable.

We let ρ(t, a, x) = π(a)u(t, a, x), and we reduce ourselves to the problem of finding
u(t, a, x) ∈ C(0, T ;L2(0, a†;H

1(Ω))) such that

ut + ua − div (k(p(t, x), a)∇u) = f(t, x) in (0, T )× (0, a†)× Ω ,

p(t, x) =

∫ a†

0

π(a)u(t, a, x) da in (0, T )× Ω ,

u(0, a, x) = u0(a, x) in (0, a†)× Ω

u(t, 0, x) =

∫ a†

0

m(a)u(t, a, x) da in (0, T )× Ω ,

k(a, x)n · ∇u = 0 on (0, T )× (0, a†)× ∂Ω ,

(7)

where now u0(a, x) = ρ0(a,x)
π(a)

, while m(a) = β(a)
π(a)

is the so called maternity function.

Notice that m ∈ L∞(0, a) as for all a ∈ (0, a) we have m(a) ≤ β+.
We focus here on the numerical treatment of the problem and we assume through-

out the paper existence and uniqueness of smooth, nonnegative solutions [10].

3. Time discretization

Let tn = n∆t (n = 0, 1, . . . , Nt) be a partition of the interval (0, T ) into Nt subin-
tervals (for simplicity we consider an uniform discretization, adaptivity in time being

90



beyond the scope of this paper). We denote with un(a, x) and pn(x) the approxi-
mations of u(tn, a, x) and p(tn, x), respectively, and we advance in time equation (7)
by means of a semi-implicit scheme, where both the initial condition in age and the
diffusion coefficient are computed at the previous time step. Moving from tn−1 to tn

we solve the following parabolic problem in age and space.

Find un ∈ L2(0, a†;H
1(Ω)) such that for all v ∈ H1(Ω)

d

da
〈un, v〉+ A(pn−1; a; un, v) +

1

∆t
(un, v) = (f, v) +

1

∆t
(un−1, v)

un(0, x) =

∫ a†

0

m(a)un−1(a, x) da, pn(x) =

∫ a†

0

π(a)un(a, x) da,

(8)

where 〈·, ·〉 denotes the duality pairing between H1(Ω) and H−1(Ω), and where
A(pn−1; a; ·, ·) is the bilinear form given by

A(pn−1; a; w, v) =

∫
Ω

k(pn−1(x), a)∇w · ∇v dx.

By standard coercivity arguments one can prove existence and uniqueness for the
solution of (8).

Remark 3.1 The coercivity and the continuity of the bilinear form A(pn−1; a; ·, ·) +
1

∆t
(·, ·) are straightforward. Moreover the fact that the maternity function m ∈

L∞(0, a†) guarantees that un(0, x) ∈ L2(Ω) as long as un−1 ∈ L2([0, a†]× Ω).

4. Space discretization

We discretize in space equation (8) by means of finite elements (see [11] for
an introduction to finite element methods). Let then Ω =

⋃N
j=1Kj, where each

Kj = TKj
(E) is an element of the triangulation, E is the reference simplex and TKj

is an invertible affine map. The associated finite element space is then

Vh =
{
ϕh ∈ C0(Ω) |ϕh|Kj

◦ TKj
∈ Pk(E)

}
,

where Pk(E) is the space of polynomials of degree at most k on E. A semi-discrete
problem in space is then obtained by applying a Galerkin procedure to (8) and
choosing a finite element basis for Vh. Letting {ϕj}j=1,..,Nh

be the nodal basis of the
finite element space Vh, the semi-discrete solution unh(a, x) is given by

unh(a, x) =

Nh∑
j=1

unj (a)ϕj(x).
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By denoting with unh(a) = (un1 (a), . . . , unNh
(a))T , since the finite element basis func-

tions depend only on space, we can rewrite problem (8) as

M
dunh
da

+A(n−1)(a)unh +
1

∆t
Munh = fn +

1

∆t
Mun−1

h ,

unh(0) =

∫ a†

0

m(a)un−1
h (a) da, pnh =

∫ a†

0

π(a)unh(a) da,

(9)

where M is the mass matrix (Mij =
∫

Ω
ϕjϕi dx) and A(n−1) is the stiffness matrix

associated to the bilinear form A(pn−1
h ; a; ·, ·), (

[
A(n−1)(a)

]
ij

= A(pn−1
h ; a;ϕj, ϕi)).

5. Age discretization

We advance in age the differential problem in (9) by means of the θ-method
(see [11]). Let then am = m∆a (m = 0, 1, . . . , Na) be a partition of the age inter-
val [0, a†] into Na subintervals of uniform amplitude. For j = 1, .., Nh, we let un,mj
denote the approximation of unj (am), and the approximation to u(tn, am, x) is then
given by

un,mh (x) =

Nh∑
j=1

un,mj ϕj(x).

We denote by un,mh = (un,m1 , . . . , un,mNh
)T the unknown vector at time tn and age am,

and we advance from age level am to am+1 by the θ-method, which reads, for 0 ≤
θ ≤ 1,

M
un,mh − un,m−1

h

∆a
+ θ

(
A(n−1)
m un,mh +

1

∆t
Mun,mh

)
+

(1− θ)
(
A(n−1)
m−1 un,m−1

h +
1

∆t
Mun,m−1

h

)
=

θ

(
fn,m +

1

∆t
Mun−1,m

h

)
+ (1− θ)

(
fn,m−1 +

1

∆t
Mun−1,m−1

h

)
,

(10)

where A(n−1)
m = A(n−1)(am). If θ = 0 we have the Forward Euler method (fully

explicit in age), if θ = 1 we have the Backward Euler method (fully implicit in age),
while θ = 1/2 corresponds to the Crank-Nicholson method [11].

Finally, the values of un,0h and pnh will be computed by replacing the integrals
in (9) with suitable quadrature rules. In the numerical result section, we us in both
cases a second order Simpson quadrature rule over two adjacent intervals.

6. Stability and convergence

Denoting by Un
h = (un,0h ,un,1h , . . . ,un,Na

h ) the approximate solution at time t = tn,
we define the discrete L1(0, a†;L

2(Ω)) norm as

‖Un
h‖L1(0,a†;L2(Ω)) =

Na∑
m=0

∆a ‖un,mh ‖0 ,
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where ‖ · ‖0 is the standard L2(Ω) norm. Under some mild assumption on the exact
solution, the following stability and convergence results for the proposed scheme
(with θ = 1) hold.

Proposition 6.1 (Stability) For any n = 1, . . . , Nt, the following estimate holds:

‖Un
h‖L1(0,a†;L2(Ω)) ≤

(
1 + ea†β

2
+T
) ∥∥U0

h

∥∥
L1(0,a†;L2(Ω))

,

where β+ is the one in (4). �

Proposition 6.2 (Convergence) Let Th be a regular family of triangulations on Ω.
Assume that the solution u(t, a, x) of the continuous problem is such that, for all

t ∈ (0, T ),
∂u

∂a
(t, ·, ·),

∂u

∂t
(t, ·, ·) ∈ L1(0, a†;H

1(Ω)), and
∂2u

∂a2
(t, ·, ·), ∂

2u

∂t2
(t, ·, ·) ∈

L1(0, a†;L
2(Ω)). Then, using linear finite elements, the following estimate holds

‖u(tn, ·, ·)−Un
h‖L1(0,a†;L2(Ω)) ≤

∥∥U0
h − Πhu0

∥∥
L1(0,a†;L2(Ω))

+ Ch ‖u(tn, ·, ·)‖L1(0,a†;H1(Ω)) + Ch

∫ tn

0

∥∥∥∥∂u∂t (t, ·, ·)
∥∥∥∥
L1(0,a†;H1(Ω))

dt

+ Ch
n∑
p=0

∆t

∥∥∥∥∂u∂a (tp, ·, ·)
∥∥∥∥
L1(0,a†;H1(Ω))

+ C ∆t

∫ tn

0

∥∥∥∥∂2u

∂t2
(t, ·, ·)

∥∥∥∥
L1(0,a†;L2(Ω))

dt

+ C ∆a
n∑
p=0

∆t

∥∥∥∥∂2u

∂a2
(tp, ·, ·)

∥∥∥∥
L1(0,a†;L2(Ω))

,

(11)
where the constant C > 0 is independent of h, ∆a, and ∆t. �

Proofs of the above propositions follow from a generalization of the results in [2],
and will be detailed in a forthcoming paper [4].

7. Algorithm

Given u0,m
h (m = 1, . . . , Na), and p0

h, for n = 1, . . . , Nt:

1. Compute the initial value un,0h from the previous time step via a Simpson
quadrature rule over two adjacent age intervals

un,0h =

Na/2∑
l=1

∆a

6

[
m(a2(l−1))u

n−1,2(l−1)
h + 4m(a2l−1)un−1,2l−1

h +m(a2l)un−1,2l
h

]
.

2. For m = 1, . . . , Na
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Figure 1: Maternity function (left) and age-space initial profile (right).

(a) Assemble the stiffness matrix A(n)
m from the population at previous time

step [
A(n)
m

]
ij

= A(pn−1
h : am;ϕj, ϕi) ,

(b) solve[
(∆t+ θ∆a)M + θ∆t∆aA(n)

m

]
un,mh

= θ∆aM un−1,m
h +

[
(∆t− (1− θ)∆a)M − (1− θ)∆t∆aA(n)

m−1

]
un,m−1
h

+ (1− θ)∆aM un−1,m−1
h + ∆t∆a

[
θ fn,m + (1− θ) fn,m−1

]
.

3. Update the total population pnh via a Simpson quadrature rule over two adja-
cent age intervals

pnh =

Na/2∑
l=1

∆a

6

[
π(a2(l−1))u

n,2(l−1)
h + 4 π(a2l−1)un,2l−1

h +m(a2l)un,2lh

]
.

8. Numerical results

We present in this section some numerical results to show the effectivity of the
method. The spatial domain is Ω = (0, 1), the age interval is [0, 100], and we choose
as maximal time T = 10. The computational domain is discretized by a uniform
mesh in space, time and age, and we choose θ = 1. The numerical simulations are
run on a self developed code in Matlab R© 7.8.

We consider a non-symmetric initial distribution of population (with respect to
both space and age) given by

u0(x, a) = e
−
(

(a−30)2

200
+100(x−0.4)2

)
,
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Figure 2: Diffusion coefficients: kp(p) (left) and ka(a) (right).

and we choose the mortality and fertility function as

µ(a) =
1

a† − a
, β(a) =


0 if a ≤ a1

β(a− a1)α−1e−
(a−a1)

ϑ

ϑαΓ(α)
if a1 < a < a2

0 if a ≥ a2,

where we set a1 = 17, a2 = 70, β = 7, α = 5, and ϑ = 3. We plot in Figure 1 the
resulting maternity function and the initial profile of the problem.

We consider a diffusion coefficient k(p(t, x), a) = kp(p)× ka(a), where we assume
kp(p) to be a monotonic function of the total population p(t, x). The rationale behind
this choice is that the population is more keen to move in areas where a lower level
of individuals is present, but a different behavior can be easily implemented. We
choose in the tests

kp(p) = 1− 1

1 + exp
(
−
(
p
5
− 5
)) ka(a) = 0.5 + 0.5× exp

(
−(a− 30)2

a

)
,

that we plot in Figure 2. With this choice of ka(a), youngster and old individuals
are less mobile.
We investigate numerically the spatial convergence of the method. We consider
diffusion coefficients depending on both population and age (k = kp × ka), and
population only (k = kp): we plot in Figure 3 the corresponding diffusion coefficients

in space and age at the initial time t = 0. We analyze the relative error
‖u(tn,·,·)−Un

h ‖
‖u(tn,·,·)‖

in the discrete L1(0, a†;L
2(Ω)) norm, with respect to a reference solution computed

using a very fine grid in both age and time with ∆a = 2∆t = 0.1 and h = 1/1000.
In Figure 4 we show the work precision in h, for a uniform grid in age and time with
∆a = 2∆t = 0.2 for both the case of a density dependent diffusion (left) and density
and age dependent diffusion (right). Convergence appears to be robust with respect
to the diffusion coefficients. In Figure 5 we plot, for k = kp × ka, the age profile at
x = 0.4 for different times, and the age-space contours at time T = 5.

95



Figure 3: Diffusion coefficients at time t = 0. Left: k = kp × ka. Right: k = kp.
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Figure 4: Convergence in L1(0, a†;L
2(Ω)) norm: k = kp×ka (left) and k = kp (right).
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9. Conclusions

We proposed a Galerkin type method for the numerical approximation of a density
dependent diffusion dynamics of an age-structured population. The method is based
on a finite elements discretization in space, on a semi-implicit discretization in time,
and on the θ-method in age. The separate discretization of time and age, naturally
allows for separate adaptivity, which can be necessary when dealing with practical
ecological problems. Numerical results showed the effectiveness of the method, that
will be analyzed in a more comprehensive way in a forthcoming paper [4].
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Abstract

Properties satisfied by the moments of the partial non-central chi-square distribu-
tion function, also known as Nuttall Q-functions, and methods for computing these
moments are discussed in this paper. The Nuttall Q-function is involved in the study
of a variety of problems in different fields, as for example digital communications.

1. Introduction

The non-central chi-square distribution function of probability appears in many
applications. For example, in radar communications it appears when computing the
detection of signals in noise using a square-law detector. Its cumulative distribution
function is also known as the generalized Marcum Q− function, which is defined by
using the integral representation

Qµ(x, y) = x
1

2
(1−µ)

∫

+∞

y

t
1

2
(µ−1)e−t−xIµ−1

(

2
√
xt
)

dt, (1)

where µ > 0 and Iµ(z) is the modified Bessel function.
In radar problems, if the signal-to-noise power ratio is x for the sum of µ in-

dependent samples of the output of a square-law detector, this integral gives the
probability of that the sum will be y or more.

The complementary function of the generalized Marcum Q− function is given by

Pµ(x, y) = x
1

2
(1−µ)

∫ y

0

t
1

2
(µ−1)e−t−xIµ−1

(

2
√
xt
)

dt, (2)

∗Former address: CWI, 1098 XG Amsterdam, The Netherlands
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and the following relation holds

Pµ(x, y) +Qµ(x, y) = 1. (3)

Methods and an algorithm for computing the functions Pµ(x, y) and Qµ(x, y) are
described in [2].

The ηth moment of the partial non-central chi-square distribution function is
given by

Qη,µ(x, y) = x
1

2
(1−µ)

∫

+∞

y

tη+
1

2
(µ−1)e−t−xIµ−1

(

2
√
xt
)

dt. (4)

In this manuscript, we give properties satisfied by the moments of the partial non-
central chi-square distribution functions and discuss methods for computing these
moments, also known as Nuttall Q-functions [4]. There are several applications where
these functions are involved as for example, the analysis of the outage probability
of wireless communication systems with a minimum signal power constraint [5], to
mention just one example within the telecommunications field.

2. Properties

The Maclaurin series for the modified Bessel function reads

Iµ(z) =
(

1

2
z
)µ

∞
∑

n=0

(

1

4
z2
)n

n! Γ(µ+ n+ 1)
. (5)

By substituting this expression in the integral representation, we obtain the series
expansion for the ηth moment of the non-central chi-square distribution function:

Qη, µ(x, y) = e−x
∞
∑

n=0

xn

n!

Γ(η + µ+ n, y)

Γ(µ+ n)
. (6)

This expansion is given in terms of one of the standard incomplete gamma func-
tions defined by

Γ(µ, x) =

∫

+∞

x

tµ−1e−t dt. (7)

Introducing the factor Γ(η + µ + n) in (6), the expansion can be also given in
terms of the incomplete gamma function ratio Qµ(y), defined by

Qµ(x) =
Γ(µ, x)

Γ(µ)
, (8)

and for which algorithms are given in [3].
The expansion for the ηth moment of the non-central chi-square distribution

function in terms of incomplete gamma function ratios is given by

Qη, µ(x, y) = e−x
∞
∑

n=0

xn

n!

Γ(η + µ+ n)

Γ(µ+ n)
Qη+µ+n(y). (9)
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The series representation can be computed by using the algorithms for the in-
complete gamma ratios described in [3]. The recurrence relation

Qη+µ+1(y) = Qη+µ(y) +
yη+µe−y

Γ(η + µ+ 1)
, (10)

is stable for Qµ(y) in the forward direction, so the evaluation of the terms in the
series for this function in (9) is rather easy.

A recurrence relation for the moments of the non-central chi-squared distribution
function can be obtained considering integration by parts in the integral in (4),
together with the relation zµIµ−1(z) =

d
dz
(zµIµ(z)). This gives

Qη,µ(x, y) = Qη,µ+1(x, y)− ηQη−1,µ+1 −
(y

x

)µ/2

yηe−x−yIµ(2
√
xy). (11)

When η = 0, this recurrence reduces to a first order difference equation for the
Marcum-Q function (see, for instance, [6] 1). The recurrence relation given in (11)
can be used for testing, and it can be also used for computation, as we describe later.

3. Computing moments using the series expansion

The series expansion given in (6) has been tested by using the recurrence relation
of (11) written in the form

Qη,µ+1(x, y)

Qη,µ(x, y) + ηQη−1,µ+1 +

(y

x

)µ/2

yηe−x−yIµ(2
√
xy)

= 1. (12)

The deviations from 1 of the left-hand side of (12) (in absolute value) will measure
the accuracy of the tested methods. The series expansion has been implemented in
the Fortran 90 module NuttallF. This module uses another module (IncgamFI)
for the computation of the gamma function ratios. We have tested the parameter
region (η, µ, x, y) ∈ (1, 50) × (1, 50) × (0, 20) × (0, 20). The tests show that an
accuracy better than 10−12 in this region can be obtained with the series expansion.

When µ or µ + n are large, it is convenient to use approximations for the ratio
of gamma functions appearing in the expression, in order to avoid the appearance of
overflow problems sooner than expected. In the case µ+ n → ∞ we have:

Γ(η + µ+ n)

Γ(µ+ n)
∼ (µ+ n)η. (13)

The following table shows some values of moments of the chi-square distribution
function computed with the series expansion and the corresponding values obtained

1We note that a factor e−y is missing in [6, Eq. (1.4)].
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η µ x y Qη,µ(x, y) Qη,µ(x, y) with Maple
1 1 0.1 1.5 0.6644091427683566 0.66440914276835656
5 10 0.1 1.5 252472.22699183668 252472.226991836658
50 30 0.1 1.5 1.1944632251434243 10+86 1.19446322514344860 10+86

1 1 1.2 5 0.5457546041478581 0.54575460414785805
5 10 1.2 5 419098.1927146542 419098.192714654143
50 30 1.2 5 6.809314196073125 10+86 6.80931419607285639 10+86

1 1 5 10 1.4822515303982464 1.48225153039824667
5 10 5 10 1654969.264263704 1654969.26426370245
50 30 5 10 1.1734657613338925 10+89 1.17346576133388184 10+89

Table 1: Values of the moments of the chi-square distribution function for different
choices of the parameters η, µ x and y. The values shown are obtained with the series
expansion and with the direct computation of the integral representation using Maple
with 50 digits.

with the direct computation of the integral representation using Maple with 50 digits
(the results shown in the table correspond to the first 18 digits obtained with these
computations). The computation of the series expansion has been implemented in
the double precision Fortran 90 module NuttallF. As can be seen, an agreement of
minimum 14-15 digits is obtained in all cases, which is consistent with the expected
accuracy of the double precision Fortran 90 module.

In some cases, Maple fails to compute the integral and acceleration can be ob-
tained by suitably truncating the improper integral and changing the variable of
integration. We notice that, as before commented, the modified Bessel function is
exponentially increasing for large arguments and then the integrand in (4) can be

estimated by tγe−(
√
t−

√
x)2 , γ = η+(µ− 1)/2 which is related to a Gaussian centered

t = x. The maximum value of this function is attained at t = (
√
x +

√
x+ 4γ)2/4

and integrating around this value with a sufficiently wide interval is enough. This
truncated integral over finite interval [a, b] can be then transformed with a linear
change to an integral in [−1, 1] and the convergence is further accelerated by con-
sidering the change of variable t = tanh(u), particularly if the trapezoidal rule is
used for evaluating the integral (see [1, §5.4.2]). These modifications are observed to
speed up the computation of the integrals using Maple, particularly for the last value
in Table 1 for which Maple does not appear to be able to converge to an accurate
value.

4. Computing moments by recursion

If we write the recurrence relation (11) as

Qη,µ+1(x, y) = Qη,µ(x, y) + ηQη−1,µ+1 +

(y

x

)µ/2

yηe−x−yIµ(2
√
xy), (14)

101



then it is clear that we have a numerically stable relation because all the terms in
the right hand side are positive.

Now, assume that the moments of order zero (Marcum functions) Q0,µ are known
for µ = 1, 2, . . . , N (or for a sequence of real values µi, i=1, . . . N , with µi+1−µi=1).
If Q(1, µ) is also known, the relation (15) can be used to compute Q(1, µ + 1);
therefore, starting from the value Q(1, 1) we can compute Q(1, µ), µ = 1, 2, . . . , N
in a stable way. In the same way, after determining Q(1, µ), µ = 1, 2, . . . , N and if
Q(2, 1) is know, we can compute Q(1, µ), µ = 1, 2, . . .N and so on.

It is worth mentioning that the inhomogeneous recurrence has to be applied with
care, particularly the inhomogeneous term. As x and/or y becomes large the Bessel
function increases exponentially; therefore we have the product of a small exponential
times an exponentially large function and because of the bad conditioning of the
exponentials, this translates into larger relative errors; additionally, the exponentials
may overflow/underflow. Part of this error can be avoided by considering the scaled
Bessel function Ĩν(x) = e−xIν(x). In terms of this function

Qη,µ+1(x, y) = Qη,µ(x, y) + ηQη−1,µ+1 +

(y

x

)µ/2

yηe−(
√
x−

√
y)2 Ĩµ(2

√
xy). (15)

An alternative way of computing with recurrences is considering a homogeneous
equation, which we can be constructed from the inhomogeneous equation writing

Qη,µ+2 −Qη,µ+1 − ηQη−1,µ+2 = cµ+1(Qη,µ+1 −Qη,µ − ηQη−1,µ+1),

cµ+1 =

√

y

x

Iµ+1(2
√
xy)

Iµ(2
√
xy)

.
(16)

Then, if Q(η − 1, µ) is know µ = 1, 2, . . .N , we can compute Q(η, µ) µ = 1, 2, . . .N ,
starting from Q(η, 1) and Q(η, 2) with the recurrence

Qη,µ+2 = (1 + cµ+1)Qη,µ+1 − cµ+1Qη,µ + ηQη−1,µ+2 − ηcµ+1Qη−1,µ+1. (17)

The advantage of this recurrence is that the overflow problems are reduced be-
cause ratios of Bessel functions appear instead of Bessel functions themselves. Also,
for computing these ratios, continued fraction representations can be used. In Table 2
the use of the recurrence relation for computing Q2,N is tested for several values of N .
The values of x and y are fixed to 2 and 3, respectively. The table shows the relative
error obtained when comparing the value obtained with the recurrence relation and
the direct computation using the series expansion of (9):

Er =

∣

∣

∣

∣

∣

1−
QS

2,N(2, 3)

QR
2,N(2, 3)

∣

∣

∣

∣

∣

. (18)

The continued fraction for the ratio of Bessel functions is computed using the
modified Lentz algorithm [7] and [1, §6.6.2].
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N Relative error (18)
10 2.96 10−16

20 4.84 10−16

30 1.67 10−15

40 1.02 10−15

50 9.02 10−15

60 3.09 10−15

Table 2: Test of the application of the recurrence relation given in (17). The rel-
ative errors are obtained when comparing the value obtained with the recurrence
relation (17) and the direct computation using the series expansion of (9).
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Abstract

Consider contact problem with Coulomb friction on two planar domains. In or-
der to find non-unique solutions we propose a new path following algorithm: Given
a linear loading path we approximate the corresponding solution path. It consists
of oriented piecewise linear branches connected by transition points. We developed
a) predictor-corrector algorithm to follow oriented linear branches, b) branching and
orientation indicators to detect transition points. The techniques incorporate semi-
smooth Newton iterations and inactive/active set strategy on the contact zone.

1. Introduction

Consider deformable bodies in mutual contact. The relevant mathematical de-
scription consists in modeling both the non-penetration conditions and a friction
law. The widely accepted Coulomb friction law represents a serious mathematical
and numerical problem.

In particular, we consider 2D static contact problem with Coulomb friction. The
problem is uniquely solvable, provided that the friction coefficient F > 0 is suffi-
ciently small, see [14, 6]. Since the seminal paper [14], no essential contribution was
made concerning solvability of this problem for general data.

Obviously, engineers have always solved this important problem numerically, re-
gardless unresolved theoretical issues. In a natural finite element (FEM) approx-
imation, the discrete problem has always a solution, disregarding the size of F ,
see [9, 8, 13]. Since the (discrete) problem is locally solvable, the idea was to apply
the Implicit Function Theorem to follow the solution path, which was parameterized
either by F or by a load increment. Nevertheless, lumped element models [11, 9, 13]
indicate, that the particular solution points of interest should be those in which the
Implicit Function Theorem fails to hold. They are turning points of the solution
path. Actually, they are responsible for non-unique solvability of the problem.
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The solution path is continuous, piecewise smooth, [8]. The classical numerical
path following techniques, see e.g. [1], have to fail in principle. In [8], a special
continuation algorithm was proposed to trace piecewise smooth solution curves. The
algorithm was tested on lumped element models with just one or two points on
the contact boundary, [12, 8].

In this paper, we present an improved continuation strategy and test it on a real
FEM model. The outline is as follows: In Section 2, we define the state problem
and its discretization. We recall the semi-smooth Newton method and apply it to
the discrete state problem, see Section 3. The actual contribution is in Section 4,
where a modified path following algorithm is presented. The substantial innovations
consist in

1. application of tangent continuation, see [3], Algorithm 4.25,

2. introducing a robust branching and orientation indicator.

Note that due to material properties, the solution components are very uneven: The
contact forces are within a range 106 Nkg−1 while displacements are tiny.

2. State problem, FEM approximation

Let us consider two bodies Ω1,Ω2 in R
2 with boundaries ∂Ωk = Γ

k

u ∪ Γ
k

p ∪ Γ
k

c ,
k = 1, 2, see Figure 1. First, denote uk the displacement field, σ(uk) the stress
tensor, fk the volume force, pk the surface traction, nk the outer normal vector to
∂Ωk, and λk, µk > 0 material parameters. The state problem is defined by the Lamé
equations in Ωk, k = 1, 2,

−divσ(uk) = fk,

σ(uk) = λktr(ǫ(uk))I + 2µkǫ(uk),

ǫ(uk) = 1
2
(∇uk + (∇uk)⊤),

Ω1

Ω2

Γ1
u

Γ2
u

Γ1
p

Γ2
p

Γ1
c = Γc

Γ2
c = Γc

Figure 1: Geometry of the problem.
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the Dirichlet and Neumann boundary conditions for k = 1, 2,

uk = 0 on Γk
u,

σ(uk)nk = pk on Γk
p ,

and by contact conditions on Γc:

• unilateral contact law, Signorini problem:

uν ≤ 0, σν ≤ 0, σνuν = 0 on Γc ,

where uν = (u1 − u2)⊤n, σν = n⊤σ(u1)n, and n = n1 ,

• transmission of contact stresses:

σ(u1)n = σ(u2)n on Γc ,

• the Coulomb friction law:

|σt| ≤ −Fσν ,
|σt| < −Fσν ⇒ ut = 0 ,
|σt| = −Fσν ⇒ ∃ct ≥ 0 : ut = −ctσt ,

where ut = (u1 − u2)⊤t, σt = t⊤σ(u1)n, t is orthogonal to n, and F > 0 is
the coefficient of friction.

After FEM approximation we get the following primal-dual discrete state prob-
lem:

Ku+N⊤λν + T ⊤λt = f , (1)

Nu ≤ 0, λν ≥ 0, λ⊤
ν Nu = 0, (2)

|λt,i| ≤ Fλn,i,

|λt,i| < Fλn,i ⇒ (Tu)i = 0,

|λt,i| = Fλn,i ⇒ ∃ ct,i ≥ 0 : (Tu)i = ct,iλt,i,











i = 1, . . . , m, (3)

where (u,λν ,λt) ∈ R
n × R

m × R
m. Here u approximates the displacement field,

λν and λt approximate normal and tangential stress components along the contact
boundary Γc, m is the number of contact nodes. Data of the model: K ∈ R

n×n is
positive definite stiffness matrix, N ,T ∈ R

m×n are full rank matrices (the actions of
distributed contact forces along normal and tangential directions), f ∈ R

n are nodal
forces.

Next, we formulate inequalities (2)–(3) as a set of nonlinear equations using
suitable projectors, see e.g. [7]. Let PR+

: R 7→ R+, PR+
(x) = max{0, x}, x ∈ R, be

the projection onto R+. Let us define PR
m

+
: Rm 7→ R

m
+ for x = (x1, . . . , xm)

⊤ by

PR
m

+
(x) = (PR+

(x1), . . . , PR+
(xm))

⊤.
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Let P[−g,g] : R 7→ [−g, g], P[−g,g](x) = max{0, x+g}−max{0, x−g}−g, x ∈ R, be the
projection onto the interval [−g, g], g ≥ 0. Let us define P[−g,g] : R

m 7→ [−g, g], where
[−g, g] = [−g1, g1]×· · ·× [−gm, gm], g = (g1, . . . , gm)

⊤, gi ≥ 0, for x = (x1, . . . , xm)
⊤

by

P[−g,g](x) = (P[−g1,g1](x1), . . . , P[−gm,gm](xm))
⊤.

The inequalities (2) and (3) can be equivalently written as

λν − PR
m

+
(λν + ρNu) = 0 and λt − P[−Fλν ,Fλν ](λt + ρTu) = 0,

respectively, where ρ > 0 is arbitrary but fixed (e.g., ρ = 1). Therefore, solv-
ing (1)–(3) is equivalent to finding roots y = (u,λν ,λt) ∈ R

n × R
m × R

m of the
equation

G(y) ≡







Ku+N⊤λν + T ⊤λt

λν − PR
m

+
(λν + ρNu)

λt − P[−Fλν ,Fλν ](λt + ρTu)






=







f

0

0






, (4)

where y = (u,λν ,λt) ∈ R
n × R

m × R
m.

The mapping G : R
n+2m 7→ R

n+2m is continuous and piecewise smooth. In
particular, it is piecewise affine, see e.g. [16] for the notion.

3. The semi-smooth Newton method

To solve (4), we apply the Newton iterations. Due to the nature of the mapping G,
semi-smooth methods are applicable [2]. Let us also refer to [10], where this technique
was used for solving the Signorini problem.

Let M = {1, 2, . . . , m} be the set of all indices of contact points. Given y =
(u,λν ,λt) ∈ R

n × R
m × R

m, we define the inactive sets Iν = Iν(y), I+t = I+t (y),
I−t = I−t (y) by

Iν = {i ∈M : λν,i + ρ(Nu)i < 0},
I+t = {i ∈M : λt,i + ρ(Tu)i − Fλν,i > 0},

I−t = {i ∈M : λt,i + ρ(Tu)i + Fλν,i > 0},

and the active sets Aν = Aν(y), At = At(y) as their complements:

Aν =M\ Iν , At =M\ (I+t ∪ I−t ).

Let us introduce the indicator matrix DS ∈ R
m×m of S ⊂M as follows:

DS = diag(s1, . . . , sm), si =

{

1, i ∈ S,
0, i ∈M \ S.
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We observe that

G(y) =









Ku+N⊤λν + T⊤λt

λν −DAν
(λν + ρNu)

λt −DAt
(λt + ρTu)−DI+

t

Fλν +DI−

t

Fλν









= J(y)y ,

where

J(y) ≡









K N⊤ T ⊤

−ρDAν
N DIν 0

−ρDAt
T F(DI−

t

−DI+

t

) DI+

t
∪I−

t









. (5)

Note that the matrix J(y) can be interpreted as a generalized Jacobi matrix namely,
the differential of a slanting function related to the mapping G at the point y, see [2].
We apply the semi-smooth Newton method for finding roots of (4).

Algorithm SSNM : Denote F ∈ R
n+2m, F ≡ (f , 0, 0) ∈ R

n ×R
m × R

m, the right-
hand side of (4). Set the tolerance ε > 0. Let y(0) ∈ R

n+2m, ρ > 0, k := 1.

(i) Define the inactive/active sets related to y(k−1). Assembly the relevant J(y(k−1)).

(ii) Compute y(k) by solving the linear system

J(y(k−1))y(k) = F . (6)

(iii) If ||y(k) − y(k−1)||/||y(k)|| ≤ ε, return y := y(k).

(iv) Set k := k + 1 and go to step (i).

In the case of convergence, we define

y = SSNM(y(0), f )

as a numerical solution of problem (4). We usually set the tolerance ε = 10−6,
referring to the observation at the end of Section 1.

It is readily seen that if y = SSNM(y(0), f), y = (u,λν ,λt) ∈ R
n × R

m × R
m,

then

(Nu)i = 0, i ∈ Aν , (Tu)i = 0, i ∈ At, (7)

λν,i = 0, i ∈ Iν , λt,i + Fλν,i = 0, i ∈ I−t , λt,i −Fλν,i = 0, i ∈ I+t . (8)

As the active sets are complementary to the inactive sets, they define decoupling of
contact nodes into two groups, i.e. the nodes with the Dirichlet conditions (7) and
the nodes with the Neumann conditions (8).

Take another view: We may try to guess the inactive sets I = {Iν ; I+t ; I−t }
on the contact. Due to the dichotomy, it would imply the information concerning
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A = {Aν ;At}. Hence, given I = {Iν ; I+t ; I−t } on the contact, and given a load f ,
find (u,λν ,λt)∈Rn × R

m × R
m such that









K N⊤ T⊤

−ρDAν
N DIν 0

−ρDAt
T F(DI−

t

−DI+

t

) DI+

t
∪I−

t

















u

λν

λt









=









f

0

0









. (9)

System (9) can be interpreted as the discrete form of the Lamé equations (1) with the
Dirichlet and Neumann boundary conditions (7) and (8), respectively. It motivates
to define the linear operator

y = DirNeu(I, f ) , y = (u,λν ,λt) . (10)

Note that due to the clamping along Γ1
u and Γ2

u, see Figure 1, the system (9) is
uniquely solvable. The matrix J(y) of this system is regular. This justifies, by the
way, that iterations (6) are well defined.

Remark 3.1 Let y(0) = DirNeu(I, f ). Then y(1) = SSNM(y(0), f) and y(1) = y(0)

i.e., Algorithm SSNM converges in the first iteration. In other words, y(0) =
SSNM(y(0), f) is a fixed point of the iterations (6). Conversely, if y(0) ∈ R

n+2m,
y(0) = SSNM(y(0), f), then defining I = {Iν ; I+t ; I−t } to be the inactive sets of y(0),
we have y(0) = DirNeu(I, f). In that case, the solutions of the Dirichlet-Neumann
problem (9) and the Coulomb friction problem (4) are identical.

Remark 3.2 In principle, we could find all roots y of (4) i.e., all fixed points y of
the iterations (6). Given f , make a trial choice of the inactive sets I = {Iν ; I+t ; I−t }
on the contact. Apply Remark 3.1: Let y(0) = DirNeu(I, f). The trial choice is
successful, provided that y(0) = SSNM(y(0), f). The trouble is that we would have
to check all 3

∑m
j=0

(

m
j

)

= 3 ·2m variants of the inactive sets I = {Iν ; I+t ; I−t }, which
is not reasonable.

Remark 3.3 Let y = DirNeu(I, f ). The mapping G, see (4), is not differentiable
at y provided that the active sets Aν and At have a special property: there exists
a contact point i ∈M such that

either λν,i + ρ(Nu)i = 0 (11)

or λt,i + ρ(Tu)i − Fλν,i = 0 (12)

or λt,i + ρ(Tu)i + Fλν,i = 0 . (13)
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4. Continuation

Consider the Coulomb friction model (1)-(3), i.e. (4), assuming that f = f (α)
depends on a scalar parameter α. We impose a continuous loading regime and seek
for continuous response of the model. In particular, we consider a linear loading path

f (α) = (1− α)f1 + αf2, α ∈ R, (14)

where f 1 ∈ R
n and f 2 ∈ R

n are given. The resulting solution path is a curve in
R×Rn+2m, see a qualitative sketch in Figure 2. It consists of oriented linear branches,
connected by transition points.

Each oriented linear branch connecting transition points (αk−1,yk−1) ∈ R×Rn+2m

and (αk,yk) ∈ R× R
n+2m is parameterized by α, and defined as

α 7−→ (α,y(α)) ∈ R× R
n+2m , y(α) = DirNeu(I, f (α)) . (15)

Note that the same branch (15) can have two different orientations. In particular,

• if αk−1 < αk, we consider the positive orientation, i.e., αk−1 < α < αk, as α is
increasing,

• if αk−1 > αk, we consider the negative orientation, i.e., αk−1 > α > αk, as α is
decreasing.

Let us emphasize that the inactive set I does not depend on the position of α in the
above intervals. In Subsection 4.1, we give a predictor/corrector algorithm to follow
such branch numerically. We can define the orientation of a particular branch by
setting

s ≡ αk − αk−1

|αk − αk−1| .

Hence, orientation s attains the value s = 1 (positive orientation) and s = −1 (neg-
ative orientation). The mentioned predictor/corrector algorithm follows a branch
with the same orientation s.

Oriented linear branch terminates in a transition point (αk,yk) ∈ R × R
n+2m.

It is related to a fixed point yk = SSNM(yk, f(αk)). Due to Remark 3.1, yk =
DirNeu(I, f (αk)), where I = {Iν ; I+t ; I−t } are the inactive sets of yk. It can be
shown that in a transition point (αk,yk) ∈ R×Rn+2m, the mapping G, see (4), is not
differentiable. We refer to Remark 3.3 for the analysis. Note that our objective is not
to localize transition points exactly. In fact, due to rounding errors it is not possible.
Instead, we develop computationally stable branching and orientation indicators
which are formally related to each of the transition points, see Subsection 4.2.

4.1. Continuation of an oriented linear branch

Data of a linear branch: The orientation s and the fixed inactive set I. The
continuation algorithm is defined as a one-step recurrence

(αi−1,y(αi−1)) ∈ R× R
n+2m → (αi,y(αi)) ∈ R× R

n+2m .
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α

 y
 ∈

 R
n+

2m

(αk−1
, y

k−1)

(αk
, y

k)

(αk+1
, y

k+1)

α
start

α
end

Figure 2: Solution path. For a fixed α, we may encounter up to five crossing points
of the paths. They are related to five different solutions of equation (4) for the same
right-hand side.

Parameters of the algorithm: The step-length h, in a range 0 < hmin ≤ h ≤ hmax.
The adaptive step-length strategy: Define cs and cp, 0 < cs < 1 < cp, the shortening

and the prolongation rates.
Let (αi−1,y(αi−1)) ∈ R× R

n+2m be given. Consider the following

Predictor-Corrector algorithm:

(i) Predictor : αnew = αi−1 + sh , y(0) = DirNeu(I, f (αnew)).

(ii) Corrector :

if y(1) = SSNM(y(0), f (αnew)) & y(1) = y(0)

return αi := αnew , y(αi) := y(1) , i := i+ 1 , h := min(cph, hmax)

elseif h < hmin

return continuation failed, the last computed point of the branch:

(αi−1,y(αi−1)) with orientation s and the inactive set I
else h := max(csh, hmin) , go to step (i) .

The algorithm returns either the new continuation point (αi,y(αi)) ∈ R × R
n+2m

with the same orientation s and the inactive set I, or fails - the case which will be
discussed in Subsection 4.2.

Note that the above algorithm can be characterized as a tangent continuation,
see [3], Algorithm 4.25. The step-size control is inspired by [4].
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αi−1 αi−1αnew = αi αnew

y(αi−1)

y(αi−1)
y(0) = y(1) ≡ y(αi) y(0) 6= y(1)

Figure 3: Oriented linear branch, predictor-corrector step. The corrector step is
either accepted (on the left) or not accepted (on the right), and step-size h has to
be shortened accordingly.

4.2. The branching and orientation indicators

Let (αi−1,y(αi−1)) ∈ R × R
n+2m be the last point of a linear branch with an

orientation s and inactive set I, see the failure of path following the linear branch
in Subsection 4.1. Define a trial point (αfail,yfail) ∈ R× R

n+2m setting

αfail = αi−1 + shfail , yfail = DirNeu(I, f (αfail)) , (16)

where hfail is the step-length related to the failure of continuation. Note that yfail 6=
SSNM(yfail, f(αfail)). Figure 4, the upper panel, suggests that (αi−1,y(αi−1)) and
(αfail,yfail) are close to a transition point. We may envisage two qualitatively different
cases of the transition.

According to the generic scenario, we should indicate a change of I: Let u, λν

and λt denote the solution components y(αi−1) = (u,λν ,λt) ∈ R
n × R

m × R
m. Let

M = min {|λν + ρNu|, |λt + ρTu− Fλν |, |λt + ρTu+ Fλν |} . (17)

The idea is that the minimizer of the above expression should indicate a transition
point. We expect that just one component of the minimizer is significant. The
transition is related to a transition between inactive and active sets. In this respect,
the minimizer is interpreted as follows:

If M = |λν + ρNu|i, then Aν
i←→ Iν

else if M = |λt + ρTu− Fλν |i, then At
i←→ I+t

else if M = |λt + ρTu+ Fλν |i, then At
i←→ I−t











Inew := I. (18)

The symbol “
i←→” indicates a particular transition of the index i between the active

and the inactive set. The procedure above results in an update of I denoted as Inew.
We propose the following
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αi−1 αi−1αfail αfail

y(αi−1) y(αi−1)

yfail yfail

αi−1 αi−1 = αtrial 2αfail = αtrial 1 αfail

y(αi−1) y(αi−1)

yfail yfail

ytrial 1

ytrial 2

Figure 4: Let (αi−1,y(αi−1)) ∈ R × R
n+2m be the last point on a linear branch,

continuation failure indicated on (αfail,y(αfail)) ∈ R × R
n+2m. The upper panel,

qualitative scenario envisaged: a) transversal transition on the left, b) fold (turning
point) transition on the right. The lower panel: Branching due to the algorithm.

Branching Algorithm

Let (αi−1,y(αi−1)) ∈ R× R
n+2m be the last point of a linear branch with an orien-

tation s and inactive set I. Update Inew via (18).

Define αtrial 1 = αi−1 + shfail and ytrial 1 = DirNeu(Inew, f (αtrial 1)).

If

ytrial 1 = SSNM(ytrial 1, f(αtrial 1), set (αtrial 1,ytrial 1) ∈ R × R
n+2m to be the

first point on a linear branch with the orientation s := s and the inactive set
I := Inew.
Comment: transversal transition.

else

Define αtrial 2 = αi−1 and ytrial 2 = DirNeu(Inew, f(αtrial 2)).

Set (αtrial 2,ytrial 2) ∈ R× R
n+2m to be the first point of a linear branch with

orientation s := −s and inactive set I := Inew.
Comment: fold, turning point.
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Figure 5: Contact of two elastic bodies Ω1 (the upper body) and Ω2, along the contact
boundary Γc. The loading is due to the surface traction. On the right: Resulting
deformation.

Set i := i+ 1, and apply continuation of the oriented linear branch with orientation
s and the inactive set I.

The idea of the algorithm is indicated in the lower panel of Figure 4. The algo-
rithm works provided that hmin is sufficiently small.

The ambition of the present paper is not to justify the branching scenario theo-
retically. Note only, that the transversal transition may be described using a proper
version of the Implicit Function Theorem, see e.g. [15, 5] and [8] in the context of
Coulomb friction. In case of the fold transition, we cannot quote (to our knowledge)
a relevant analytical result immediately.

5. Numerical experiments

We consider a particular geometry, see Figure 5.
The actual computations are depicted in Figure 6. If F is sufficiently small then

the solution path should contain transversal transition points only, see e.g. [8]. It
pertains to Figure 6, upper left. For larger friction coefficients (e.g. F = 0.6 and
F = 30), the path-following algorithm reveals non-unique solutions of the problem,
see Figure 6, upper right and lower-left including the corresponding zoom. In par-
ticular, we can have up to three (F = 0.6) and five (F = 30) solutions for a fixed
parameter α.
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Figure 6: Discretization: n = 1320, m = 30. The stepsize control: 10−5 ≤ h ≤ 5,
cp = 1.3, cs = 0.5. Plots: Parameter α vs. the solution component λt,1, for selected
friction coefficients F .
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[13] Ligurský, T.: Theoretical analysis of discrete contact problems with Coulomb
friction. Appl. Math. 57 (2012), 263–295.
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Abstract

An improved version of the Integrative Optical Imaging (IOI) method for diffu-
sion measurements in a geometrically complex environment of the brain extracellular
space has been developed. We present a theory for this Fast Optical Tracking Of Dif-
fusion (FOTOD) which incorporates a time-dependent effective diffusion coefficient
in homogeneous anisotropic media with time-dependent nonspecific linear clearance.
FOTOD can be used to measure rapid changes in extracellular diffusion permeability
that occur, e.g., during brain insults. The achievable time resolution is approximately
one second, a ten fold improvement compared to the traditional IOI method.

1. Introduction

Brain cells (neurons and glia) are surrounded by an extracellular space (ECS)
that facilitates diffusion transport of neuroactive substances, nutrients, metabolites
and therapeutic agents. Our knowledge about the ECS in living brain tissue has
largely been deduced from studying diffusion of extracellular marker molecules [2].
The ECS is a geometrically complex porous environment [4] characterized by two
basic properties: volume fraction α and diffusion permeability θ, see [1]. Volume
fraction is the proportion of brain tissue volume occupied by the ECS and primarily
governs concentration of molecules released into the ECS. Diffusion permeability,
a ratio of the effective diffusion coefficient to its value in an obstacle-free medium,
describes how much a diffusion-mediated process is slowed down in the ECS by
obstacles represented by the cells and their various appendages. One additional
parameter, κ, accounts for small nonspecific clearance proportional to the concen-
tration. It describes nonspecific loss of marker molecules over time, e.g., into blood
stream.

We will address the physiologically important situation where the diffusion per-
meability depends on time, as is observed during brain insults, e.g., following a stroke.
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Our assumption is that the brain ECS environment remains homogeneous, that is,
the time-dependent changes are everywhere the same. However, we do allow the
medium to be anisotropic, as typified by white matter fiber tracts.

The diffusion experiment consists of releasing a small amount of a fluorescent
substance into the ECS from a glass micropipette and repeatedly recording the re-
sulting diffusion cloud with a charge-coupled device (CCD) camera. Because the
camera observes an image formed by a microscope, the optical properties of the
imaging system (its point-spread function) must be taken into account.

2. Theory

We shall investigate concentration c(~r, t) of some extracellular marker as a func-
tion of position in space ~r = (x1, x2, x3) and time t. In a geometrically complex
ECS, all the diffusion parameters are defined as volume-averaged local quantities
over a sufficiently large sampling volume. The concentration is related to the tissue
volume rather than the ECS volume because the optical method does not distinguish
between the tissue compartments. We assume that a homogeneous but anisotropic
environment with time-dependent diffusion characteristics can be described by an
effective diffusion tensor

D⋆
ij(t) = DΘij , (1)

where D is the scalar free diffusion constant and Θij is the diffusion permeability
tensor. Both indices run from 1 to 3. In an environment where the loss of diffus-
ing substance is proportional to the concentration, we also introduce linear time-
dependent clearance κ(t), which is also assumed to be homogeneous. The diffusion
equation in this environment is

∂c(~r, t)

∂t
= D⋆

ij(t)
∂2c(~r, t)

∂xi∂xj

− κ(t)c(~r, t) , (2)

where we used Einstein’s notation for sums (aibi = a · b =
∑

3

i=1
aibi). Equation (2)

expresses the mass preservation when the diffusion flow ~ obeys Fick’s law

ji(~r, t) = −Dik(t)
∂c(~r, t)

∂xk
.

The initial concentration at time t0 is represented by a function c(~r, t0).
Equation (2) with its initial condition can be solved in the Fourier domain.

Fourier transform of c(~r, t) with respect to the three spatial coordinates is defined as

ĉ(~k, t) =

∫∫∫ ∞

−∞

c(~r, t) exp(2πikjxj) d~r ,

and the inverse as

c(~r, t) =

∫∫∫ ∞

−∞

ĉ(~k, t) exp(−2πikjxj) d~k .
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The Fourier transform turns Eq. (2) into

∂ĉ(~k, t)

∂t
= −

(

4π2kiD
⋆
ij(t)kj + κ(t)

)

ĉ(~k, t) (3)

with the initial condition ĉ(~k, t0).
Solving Eq. (3) with respect to time yields

ĉ(~k, t) = ĉ(~k, t0)ĉδ(~k, t) , (4)

where
ĉδ(~k, t) = Qδ(t) exp

(

−2π2kiΣij(t)kj
)

, (5)

Qδ(t) = exp

(

−
∫ t

t0

κ(t′) dt′
)

, (6)

and

Σij(t) = 2

∫ t

t0

D⋆
ij(t

′) dt′ . (7)

When the initial condition is Dirac’s δ-function δ(~r), its Fourier transform is unity.

The inverse Fourier transform cδ(~r, t) of ĉδ(~k, t) therefore describes the diffusion cloud
initiated by the point source at time t = t0:

cδ(~r, t) = Qδ(t)φδ(~r, t) , (8)

where

φδ(~r, t) =
1

(2π)
3

2 [det(Σij)]
1

2

exp

(

−
xiΣ

−1

ij (t)xj

2

)

. (9)

This is a 3D Gaussian distribution with variance matrix Σij(t) and with the total
amount of diffusing substance decreasing as Qδ(t) from its initial value of Qδ(t0) = 1.

Multiplication in the Fourier domain corresponds to a convolution in the spatial
domain. The concentration distribution following an arbitrary initial condition can
therefore be written as

c(~r, t) =

∫∫∫ ∞

−∞

c(~r ′, t0)cδ(~r − ~r ′, t) d~r ′ . (10)

The total amount of diffusing substance is initially Q(t0) =
∫∫∫∞

−∞
c(~r, t0) d~r and

changes with time as

Q(t) =

∫∫∫ ∞

−∞

c(~r, t) d~r = Q(t0)Qδ(t) , (11)

where Qδ(t) is substituted from Eq. (6). If a 3D measurement of concentration in
time is available, the clearance κ(t) can be computed from Eq. (11):

κ(t) = − d

dt
ln

(

Q(t)

Q(t0)

)

. (12)
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Since the substance loss is homogeneous in space, the effect of nonzero clearance
simply amounts to a global scaling of amplitude.

If the measured 3D concentration is normalized by the total amount Q(t) of the
diffusing substance at every time, a probability density function

φ(~r, t) =
c(~r, t)

Q(t)
(13)

can be constructed and the tensor of its second moments µij(t) computed:

µij(t) =

∫∫∫ ∞

−∞

xixjφ(~r, t) d~r

=
1

Q(t0)

∫∫∫ ∞

−∞

c(~r ′, t0)

[
∫∫∫ ∞

−∞

xixjφδ(~r − ~r ′, t) d~r

]

d~r ′

=
1

Q(t0)

∫∫∫ ∞

−∞

c(~r ′, t0)
[

Σij(t) + x′
ix

′
j

]

d~r ′

= Σij(t) + µij(t0) .

(14)

The components of the effective diffusion tensor are now easily extracted as time
derivatives of these moments:

D⋆
ij(t) =

1

2

dµij(t)

dt
. (15)

Unfortunately, a complete 3D measurement of the concentration is not usually
available. More common is an experimental setup with a traditional (non-confocal)
microscope where a 2D image is recorded. Because the microscope’s objective has
a finite aperture, the system appears to be imaging a virtual object, constructed
from the true object by a convolution with the point-spread function (PSF) S(~r) of
the system. The effective width of the PSF limits the system resolution. Using the
approximation for S(~r) suggested by [3], we can derive estimates for the effective
“horizontal” and “vertical” resolutions ∆h and ∆v, respectively:

∆h = 0.61λ

√

n2 −N2

A

nNA

and ∆v = 2λ
n2 −N2

A

nN2

A

, (16)

where λ is the wavelength, n is the index of refraction of the environment under the
objective, and NA is the numerical aperture. The horizontal resolution is typically
smaller than the corresponding size of the recorded image pixel and the horizontal
PSF effect can thus be safely ignored. Resolution ∆v along the microscope optical
axis is usually much lower and cannot be ignored. Under these assumptions, we can
utilize the PSF approximation in the object space

S(~r) = δ(x1)δ(x2)Sv(x3) , (17)
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where

Sv(x3) =
1

∆v
sinc2

(

πx3

∆v

)

(18)

and sinc(x) = sin(x)/x. We shall see that the exact functional form of Sv(x3) is not
important but the validity of the approximation given by Eq. (17) is.

If the PSF was very sharp (S(~r) = δ(~r)), the imaging system would simply record
2D image proportional to the concentrations c(x1, x2, x3 = z0, t) in the plane of focus
x3 = z0. Due to the PSF blurring effect, however, it instead appears to detect signal
originating from concentration

cs(x1, x2, z0, t) =

∫∫∫ ∞

−∞

c(~r ′, t)S(~r − ~r ′) d~r ′

=

∫ ∞

−∞

c(x1, x2, x
′
3
, t0)Sv(z0 − x′

3
) dx′

3

=

∫∫∫ ∞

−∞

cδ(~r
′, t)

∫ ∞

−∞

c(x1 − x′
1
, x2 − x′

2
, ξ, t0)Sv(z0 − x′

3
− ξ) dξ d~r ′

=

∫∫∫ ∞

−∞

cδ(~r
′, t)cs(x1 − x′

1
, x2 − x′

2
, z0 − x′

3
, t0) d~r

′ .

(19)

It can be seen that the effect of microscope’s PSF in our approximation results in
a simple modification (blurring along the x3 axis) of the initial condition c(~r, t0) to
cs(~r, t0). After this modification, we can consider the microscope to perfectly follow
the rules of geometrical optics, magnifying the image by a constant factor M and
amplifying the image signal by another constant factor A. A single in-focus plane
x3 = z0 through cs is imaged.

Assuming that a 2D section at x3 = z0 of the concentration cloud elicited by the
initial condition cs(~r, t0) represents all the information that is available to us, let us
extract as much as possible from it. The image intensity I(x1, x2, t) expressed in the
object coordinates after constant amplification A is

I(x1, x2, t) = Acs(x1, x2, z0, t) . (20)

For the integrated total image intensity QI(t) we get

QI(t) =

∫∫ ∞

−∞

I(x1, x2, t) dx1 dx2

= AQδ(t)

∫∫∫ ∞

−∞

cs(~r
′, t0)φδv(z0 − x′

3
,Σ33) d~r

′ ,

(21)

where

φδv(ξ,Σ33) =
1√

2πΣ33

exp

(

− ξ2

2Σ33

)

(22)

is the “vertical” portion of the Gaussian distribution φδ. We have made the depen-
dency on Σ33 = Σ33(t) explicit to emphasize it. In contrast to the 3D measurement,
the time dependency is not fully determined by the clearance term Qδ(t).
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Finally, let us calculate the second moment µJK(t) of the image. Capitalized
indices are introduced to distinguish their 2D range (J,K = 1, 2).

µJK(t) =
1

QI(t)

∫∫ ∞

−∞

xJxKI(x1, x2, t) dx1 dx2

=
AQδ(t)

QI(t)

∫∫∫ ∞

−∞

cs(~r
′, t0)

[
∫∫ ∞

−∞

xJxKφδ(~r − ~r ′, t) dx1 dx2

]

d~r ′ .

(23)

In the general anisotropic case with an arbitrarily rotated coordinate system, the
result is rather complicated. However, it is usually possible to make one of the
principle axes parallel to the x3 axis of the imaging system. We then have

Σij(t) =





Σ11(t) Σ12(t) 0
Σ21(t) Σ22(t) 0

0 0 Σ33(t)



 .

This finally leads to

µJK(t) = ΣJK(t) +

∫∫∫∞

−∞
xJxKcs(~r, t0)φδv(z0 − x3,Σ33(t)) d~r

∫∫∫∞

−∞
cs(~r, t0)φδv(z0 − x3,Σ33(t)) d~r

. (24)

3. Discussion

In Eq. (24), we have obtained a result useful for a biologist employing the FOTOD
modification of the IOI method. It provides a means of extracting the effective
diffusion coefficient as a function of time.

The experimentally accessible quantity is µJK(t). However, its time derivative
yields the corresponding components of the diffusion tensor DJK only if the last term
of Eq. (24) is constant in time. Its time dependency is determined by the shape of
the initial condition. When the initial condition is separable in the variable x3, the
blurred initial condition will also be separable, and the time dependency of this term
will “cancel out”. Therefore, for a commonly assumed Gaussian initial condition,
which is obviously separable, the extraction of the diffusion tensor is straightforward.
For a more realistic spherical initial condition though, the experimental curve of
variance versus time will not be linear even when the diffusion tensor is constant in
time.
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1 Faculty of Transportation Sciences, Czech Technical University
Na Florenci 25, Praha 1, Czech Republic

karna@fd.cvut.cz
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Abstract

This paper describes a model of influence of random errors on the safety of the
communication. The role of the communication in railway safety is specified.

To ensure a safe communication, using of safety code is important. The most
important parameter of the safety code is the maximal value of the probability of
undetected error. Problems related with computing of this value are outlined in the
article. As a model for the information transmission the binary symmetrical channel
is introduced.

The usability of the concept of a ’proper’ code is discussed.

1. Introduction

This article discuss safety of communication between components of a railway
interlocking systems (for example level crossings). The term safety is defined as
absence of unacceptable level of hazard. This definition is not quite understandable
without an additional explanation. However, for purpose of this paper it is sufficient
to consider the word “safety” in its common sense.

The safety of a system has two main aspects. A functional safety concerns the
manner how the system reacts on various combinations of outer inputs and its inner
states (“what does it do?”). A safety integrity means ability of the system to really
perform required functions (“does it really work?”). The safety integrity concerns the
resistance of the system against both systematic and random errors. Nevertheless,
only the requirements on the integrity in relation to random errors can be quantified.

This paper focuses on only a small part of the safety issues, in particular on
a model of influence of random errors on the safety integrity, namely on communi-
cation safety.
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1.1. Communication safety

Let us introduce the term “safe communication”. A safe communication must
ensure the following requirements:

• a message originates from the intended source (message authenticity),

• received information is complete and unchanged (integrity),

• messages are delivered in the right time (timeliness), and

• in the right sequence (correct ordering).

Some applications require confidentiality as an additional safety service – that the
information cannot be disclosed to unauthorized subjects.

Many techniques can be used to ensure the safety services introduced above.
Since every from these techniques provides protection against separate elementary
errors, usually combination of several of them is employed. We can add a sequence
number, a time stamp, or source and recipient identifier to the message. We can
check the maximum time delay between two messages. The receiver can send an
acknowledge message back to the sender. We can introduce a more sophisticated
procedure of identification of communication participants. We can secure the mes-
sage by a safety code or by cryptographic techniques.

The safety code has a special position among defense techniques, as it is the
unique method of protection of messages against corruption. A safety-responsible
protocol layer then should implement safety code to ensure integrity of messages.
International safety standards for various types of systems state the usage of safety
codes as mandatory requirement (for example [1] for railway applications).

2. Safety codes

An error detection code is a code detecting presence of some amount of errors in
received messages. Error detection codes are used to overcome or reduce the impact
of communication channel errors. However, these codes cannot provide a perfect
protection and some amount of residual errors passes through undetected. Quantifi-
cation of probability of occurrence of a residual error is a keystone of the probabilistic
safety integrity study. A safety code is an error detection code used as a means to
ensure safety in safety relevant communication system.

2.1. Linear binary codes

The “code-related” terminology in this paper is based on terms used in mathe-
matical coding theory (see for example [3]). In this article we restrict ourselves
only to linear binary detection codes, with codewords of length n bits, and with
k information bits, defined as follows:

A linear binary (n, k)−code K is any k-dimensional subspace of the space Zn

2
.

Traditionally, binary vectors from Zn

2
are called words ; the words from the code K
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are codewords. In the (n, k)−code the codeword length is n, number of information
bits is equal to k and number of redundant bits is equal to n− k.

The most simple example of the linear binary code is a parity check. The even

parity code consists from all words of the given length n, in which the count of ones
is even. This code has n− 1 information bits and 1 redundant bit. The parity check
is used as a safety code in most harware and software applications.

2.2. Error detection

In transfer of the encoded information in the space (transmission and reception
of the message) or in the time (usage of data storage medium to record and later
restore the message) the message can be modified by various external influences. On
the level of individual bits, a modification can manifest by missing or superfluous
bit(s), or by altered bits with overall number of bits preserved. In this paper, we
ignore the first type of modification (synchronization slip) and focus solely on the
second type – modifications that do not change the number of bits.

Let us describe the mechanism of detecting these modifications. A source intends
to send a k-bit message. The error detecting code generates an n-bit codeword u, and
the source transfers this codeword. A target receives an n-bit word v from Zn

2
, not

necessarily a codeword. If the received word v is not a codeword, then the receiver
detects an error.

The second possibility is that the received word v is a codeword. Then there
are two possible scenarios: The received codeword v is equal to the original code-
word u, because there were no modifications in transfer. Alternatively the received
codeword v is different from the original codeword u, because a modification during
transfer unfortunately creates some codeword. The receiver has no possibility to rec-
ognize, which one from this scenarios occurs. The second scenario is then bad and
results in an undetected error. The probability of such undetected error of error de-
tection codes used in safety relevant applications (including transportation control)
is very important safety parameter.

The difference v−u between the received word v and the original word u is called
an error word. The undetected error words of a linear code are all nonzero codewords
of the given code, due to its linearity (see for example [3]). This is a great advantage
of using of linear codes, as this make probability calculations more feasible than for
other types of codes.

2.3. Weight structure

We define the Hamming weight of a word as the count of non-zero bits in the
word. Then we define the minimal distance of a linear code as the smallest non-zero
Hamming weight of its codeword.

The minimal distance of a linear code sets the ability of the code to detect some
classes of transmission errors. A code with minimal distance d will detect all errors
with at most d − 1 modified bits in transmitted codeword (see [3]). Such a code
will not detect all errors with d or more modified bits. Nevertheless, some cases of
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modifications of d or more symbols will be detected. Various codes with equal n, k,
and d differ in their capability of detecting modifications with d or more changes,
and thus such codes differ in their undetected error probability.

For more detailed description of the code we define a weight structure of the
code as a vector A = (A1, A2, . . . , An), where Ai denotes count of codewords with
Hamming weight equal to i. For linear codes, the weight structure is fully sufficient
for description of the ability of the code to detect modifications of d or more symbols,
as we show in the following analysis.

2.4. Probability of undetected error

Let us derive a formula for the probability of undetected error of binary linear
code. This probability is equal to probability of receiving a non-zero codeword if the
zero codeword is transmitted (for details see [3]).

Consider a transmission of the zero codeword. Suppose we received a word with
exactly i non-zero bits. The probability that the received word is a codeword is the
ratio between the count of all codewords with i non-zero symbols (Ai from the weight

structure of the code), and count of all words with i non-zero bits
(

n

i

)

. Denoting Pi

the probability that received word has exactly i wrong bits, then the probability Pud

of an undetected error of the code is equal to

Pud =
n
∑

i=1

Pi

Ai
(

n

i

) . (1)

The probability Pi that exactly i bits are modified during transmission is inde-
pendent of the code properties, and depends solely on conditions of the information
transmission.

There are various models of communication channels, with varying character-
istics. Choosing the right model of a communication channel that corresponds to
real-world conditions, and produces useful results in our calculations is rather a dif-
ficult process.

2.5. Binary symmetrical channel

The most frequently used transmission channel model is a memoryless binary

symmetrical channel (BSC). This is a simple probability model based on a bit trans-
mission, parametrized by a constant probability of bit modification pe (bit error

rate). In this model, a transmitted bit is modified during the transmission with the
probability pe, regardless of its original value and independently of other bits in the
transmission.

In the BSC model, the probability that a word with n bits is received with i bits
modified is equal to

Pi =
(

n

i

)

pi
e
(1− pe)

n−i. (2)
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Substituting (2) to the formula (1), for the probability of undetected error we get:

Pud(pe) =
n
∑

i=1

pe
i(1− pe)

n−iAi. (3)

For a final calculation, it is necessary to know Ai, the quantities of codewords
with the Hamming weight equal to i. A binary linear (n, k)-code is a k-dimensional
linear subspace of Zn

2
. It has exactly 2k elements, and thus

A0 + A1 + . . .+ An = 2k.

As every linear code contains a zero word, A0 equals one. For minimal distance of
the code equals to d, A1, A2, . . . , Ad−1 equals zero.

Other values of Ai are known only for a few types of specially constructed codes.
The calculation of Ai for a general type of a code takes a lot of time and involves
generation of 2n−k codewords. (For more details see for example [3].) The generation
of the codewords is not complicated and easily parallelizable, however the time spent
is still enormous even for commonly used values n− k (32, 48, 64 or 96).

2.6. ‘Good’ and ‘proper’ code

Because computing of the weight structure of a code is very troublesome, there
are efforts to find some more manageable method of determination of the probability
of undetected error of the code.

First, it is not necessary to know a complete course of the function Pud(pe); for
subsequent safety considerations its maximum value is sufficient.

Second, we need not consider all possible values of the bit error probability pe.
A channel with bit error probability pe = 1 exactly inverts every transmitted message.
Generally, channels with bit error probability higher than 1/2 have tendency to invert
messages rather than transmit them unchanged. If a code does not contain a word
with all bits equal to one, then all inversions of a codeword are detected. Therefore,
for such codes it is sufficient to consider values of the pe in the interval [0, 1/2].

Introducing the boundary value pe = 1/2 into formula (3) for undetected error
probability in the BSC, it follows

Pud(1/2) =
2k − 1

2n
< 2k−n.

We underline that this estimate is the same for every binary linear (n, k)−code.
Moreover, the estimate Pud(pe) < 2k−n it fulfilled in some small neighbourhood of 1/2,
but not on the whole interval from zero to one.

In the case that the estimate Pud(pe) < 2k−n is valid on the whole interval [0, 1/2],
we need not examine the code any more. This is a motivation for following definitions
of the terms ‘good’ and ‘proper’ code:
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• A binary linear (n, k)-code is ‘good’, if for all pe ∈ [0, 1/2] the inequality
Pud(pe) < 2k−n is valid.

• A binary linear (n, k)-code is ‘proper’, if the function Pud(pe) is monotone
increasing on the interval [0, 1/2].

It is evident that a ‘proper’ code is always ‘good’ as well, and after then the term
‘proper’ seems to be redundant. However, this term has its sense: on less erroneous
channels the ‘proper’ code has a lower failure probability than on more erroneous
ones. This is reasonable behaviour.

The second reason for introducing the term ‘proper’ code is that the monotonicity
of the function Pud(pe) can be generally proven for some classes of codes. These
codes are consequently ‘good’ and theirs probability of undetected error in the BSC
is upperbounded by the known value 2k−n, which can be used in following safety
calculations of the whole system.

As consequence of this, it was widely supposed among safety engineers, that all
“reasonable” codes are ‘proper’, or at least “almost proper”. In fact, codes really
used in practice very often are not ‘proper’ and their probability of undetected error
exceeds the value 2k−n, often very strongly. Usually this occurs for relatively low
values of the bit error rate pe. For example, we found a code with maximal value
of the probability of undetected error more than thousand times higher than 2k−n.
Therefore, the execution of a probabilistic analysis using BSC is necessary in all
cases.

The evaluation of the maximal value of the probability of undetected error has to
be done numerically. When the code is not ‘proper’, the most successful procedure is
based on the Newton’s method with adaptive precision computation. As the function
Pud(pe) is almost constant on the most part of its rank, this calculation is complicated
and time-consuming as well. For recognition that the code is not ‘proper’, it is very
useful to use the binomial moments (for more details see [2]).

3. Conclusion

The calculation of the maximal value of probability of undetected error is a la-
boured and often very lengthy process. Nevertheless, it is essential for evaluation
safety parameters of the whole systems and cannot be omitted. On the other hand,
safety codes contribute to the overall safety of the railway traffic only by a small
part.

The reasons of most railway accidents are simple. In the past, unpredictable tech-
nical failures was frequent. Presently accidents caused by neglecting of maintenance
or by failure of operator predominate. Both of them are human factor failures. As
far as we know, no one railway accident caused by failure of safety code was recorded.

Recent interlocking systems pass to unified interoperable communication inter-
faces, usually designated for employment in open transmission systems (European
systems ERTMS/ETCS, GSM-R, EURORADIO protocol). Safety codes in this sys-
tems use cryptographic techniques. These cannot be evaluated by the above men-
tioned method.
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Figure 1: An example of codes, which are not ‘proper’. These are five different
codes, created by shortening of the same code. The codeword lengths n of these
codes vary from 64 to 96 bits, number of redundant bits k − n is 32 for all of them.
The horizontal line near to the bottom edge of the graph is the constant 2−32. The
maximal value of probability of undetected error is more than 50-times higher than
this value for the worst code with the codeword length 72 bits.

Another open problem is an ensuring of the independence between safety and
transmission codes. Actually, there does not exist consensus even about the definition
of this independence.
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Abstract

We show that in dimensions higher than two, the popular “red refinement” tech-
nique, commonly used for simplicial mesh refinements and adaptivity in the finite
element analysis and practice, never yields subsimplices which are all acute even for an
acute father element as opposed to the two-dimensional case. In the three-dimensional
case we prove that there exists only one tetrahedron that can be partitioned by red
refinement into eight congruent subtetrahedra that are all similar to the original one.

1. Introduction

In his speech at the International Congress of Mathematicians in Paris in 1900,
David Hilbert formulated 23 open problems for the 20th century (see [22]). His
18th problem is concerned with tiling space with congruent polytopes [19]. Up to
now, we do not know all space-filler polytopes.

In 1923, D. M. Y. Somerville in [21] discovered a special tetrahedral space-filler
(which is now called after him the Sommerville tetrahedron T1) having two opposite
edges of length 2 and the other four of length

√
3 (see Figure 1). Thus, its mirror

image is again T1. Two of its dihedral angles at edges are right and the other four
are 60◦. In Theorem 1 below we show that T1 is the only one tetrahedron up to
similarity (i.e., rotation, translation, and dilatation, but no mirroring) that can be
partitioned into 8 congruent subtetrahedra that are all similar to T1 using a special
technique which is called red refinement in the numerical analysis community. In such
a partition all faces of T1 are divided by midlines (cf. Figure 3). The tetrahedron T1

can similarly be partitioned into 27, 64, 125, . . . congruent subtetrahedra [13], but in
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Figure 1: Sommerville tetrahedron T1.

this work we shall only consider partitions which use the midpoints of edges (for any
dimension, i.e. not only for n = 3).

For any n ≥ 1 the convex hull of n + 1 points in Rn that do not lie in one
hyperplane is called n-simplex. According to [7, p. 231], it is not known whether there
exists a 4-simplex that would induce a monohedral tiling of R4, in general, not face-
to-face. In Theorem 3 we prove that no 4-simplex has only Sommerville tetrahedral
facets. In this paper we shall consider only face-to-face simplicial partitions of a given
n-simplex S ⊂ Rn, n = 1, 2, . . . , see [3, 4].

If a domain is subdivided into congruent simplices, then we may calculate more
easily entries of the stiffness matrix in the finite element method. This saves a lot of
CPU time and moreover, some superconvergence phenomena can be achieved [14].

2. Red refinement

First, we will define “red refinement” of a simplex in higher dimension by a tech-
nique due to Freudenthal [9]. The term “red refinement” seems to appear first in [1]
for two-dimensional triangulations. The regularity of a family of red refinements is
investigated in [15] and [23].

The unit hypercube K = [0, 1]n can be partitioned into n! simplices of dimension n
defined as

Sσ = {x ∈ Rn | 0 ≤ xσ(1) ≤ · · · ≤ xσ(n) ≤ 1}, (1)

where σ ranges over all n! permutations of the numbers 1 to n.
The unit hypercube K can also be trivially partitioned into 2n congruent sub-

hypercubes. Each of the sub-hypercubes can be thus partitioned into n! simplices as
in (1). This will result in a face-to-face partition of K into n!2n subsimplices. All
the subsimplices that are contained in the reference simplex

Ŝ = {x ∈ Rn | 0 ≤ x1 ≤ · · · ≤ xn ≤ 1} (2)

form a face-to-face partition which will be called to form the red refinement of Ŝ. In
this case the permutation σ is identity. The partition contains 2n subsimplices (see
Figure 2 for n = 3).
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Figure 2: The red refinement of the reference simplex Ŝ.

Definition 1 Given an arbitrary n-simplex S, the reference n-simplex Ŝ can be

mapped onto S by an affine transformation F . The 2n subsimplices that form a red

refinement of Ŝ are then mapped by F onto 2n subsimplices in S, and we will call

such a partition as a “red refinement” of S.

It is clear that the above defined “red refinement“ coincides with usual red re-
finements of triangles and tetrahedra (cf. [1, 13, 17] and Figure 3).

Remark 1 Because of possible permutations of simplex vertices, the red refinement
of a given simplex is not uniquely determined except for the case n = 1, 2. For
example, in the three-dimensional case we have 3 different possibilities how to per-
form a red refinement, since there are three possibilities to insert a new (interior) edge
connecting the midpoints of two opposite edges (cf. [13]). To see this we denote the
vertices of the reference tetrahedron Ŝ by A = (0, 0, 0), B = (1, 0, 0), C = (1, 1, 0),
and D = (1, 1, 1) and let M1, . . . ,M6 be midpoints of its edges as marked in Fig-
ure 2. Now define the affine mapping F : Ŝ → Ŝ so that F (A) = A, F (B) = C,
F (C) = B, and F (D) = D. Then the line segment M1M2 is mapped onto the line
segment M3M4 yielding a different red refinement of the simplex Ŝ with the above
permutation of vertices. Similarly we can define another affine transformation that
maps M1M2 to M5M6.

Subsimplices that share a vertex with the original simplex are called exterior or
corner simplices.

Remark 2 The n + 1 corner subsimplices are obviously similar to the original sim-
plex S for any dimension n. Since F is affine, the volume of each subsimplex in the red
refinement is 2−nvol(S) and for each red refinement of S the associated refinements
of its lower-dimensional facets are also red. According to [2], the red refinement
algorithm produces at most n!

2
congruent classes for any initial n-simplex, no matter
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how many subsequent refinements are performed (see also [23] for n = 3). Then the
corresponding family of partitions is strongly regular in the sense of Ciarlet [6].

Remark 3 The red refinement of an arbitrary triangle produces only congruent sub-
triangles. However, the next theorem shows that is not true in the three-dimensional
case.

Theorem 1 There exists only one type of a tetrahedron T (up to similarity) whose

red refinement produces eight congruent subtetrahedra similar to T . It is the Som-

merville tetrahedron T1.

Proof: Let us consider such a tetrahedron T that its red refinement produces eight
congruent subtetrahedra similar to T . Its faces are obviously partitioned into four
congruent subtriangles. The four exterior subtetrahedra and the four interior subte-
trahedra obtained by plane cuts passing through the midlines of its faces are shown
in Figure 3. We show that T is similar to the Sommerville tetrahedron T1.

Let o be the operator that assigns to a given edge of any tetrahedron its opposite
edge and let us denote by a, b, c, d, e, f the edges of the front exterior subtetrahedron
such that (see the lower part of Figure 3)

o(a) = b, o(c) = d, o(e) = f.

Parallel edges of the same length are denoted, for simplicity, by the same letters.
The exterior corner subtetrahedra are obviously similar to the original tetrahe-

dron T . Denote by g the inner edge that is surrounded by all four interior subtera-
hedra.

Consider the right interior and right exterior subtetrahedra. Their five edges are
a, b, c, d, e. Since these two subtetrahedra are congruent, the remaining sixth edges
must have the same length, i.e., |f | = |g|. Similarly, for the lower interior and lower
exterior subtetrahedra we find that |e| = |g|.

Since the regular tetrahedron cannot be divided into eight congruent subtetrahe-
dra, at least two edges of T have a different length. Without loss of generality, we
may assume that |a| 6= |e|, since e, f , and g are in all cases opposite edges (otherwise
we rename the edges a, b, c, and d).

Now consider four cases:
1. Let |a| 6∈ {|b|, |c|, |d|}. From the right exterior, right interior, and the lower

interior subtetrahedron we see that o(a) = b, o(a) = c, and o(a) = d. Hence,
|b| = |c| = |d|, since a is obviously mapped only on a during “congruence mapping”.
Consider the right interior subtetrahedron. If |b| = |d| = |e| = |g|, then the four
dihedral angles at these edges have the same size. They cannot be nonacute, since
any tetrahedron has at least three acute dihedral angles, see [12, p. 727]. Similarly
we find that dihedral angles at g are acute for all four interior subtetrahedra, which is
a contradiction. Thus, |b| = |c| = |d| 6= |e| = |f | = |g|, but then the right interior and
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Figure 3: Red refinement of a tetrahedron T by plane cuts through midlines of its
faces (left) and its exploded version (right).

right exterior subtetrahedron are not congruent (they are only indirectly congruent
up to mirroring), which is a contradiction.

2. So let |a| = |b|. Then we easily find that |b| = |c| = |d|.
The cases 3. |a| = |c| and 4. |a| = |d| can be treated similarly. Therefore,

altogether we obtain

|a| = |b| = |c| = |d|, |e| = |f | = |g|. (3)

Due to the mirror image symmetry of T and its eight subtetrahedra, the edge e is
perpendicular to the plane passing through the edges f and g. Similarly, the edge f
is perpendicular to the plane of symmetry containing e and g. Hence, we find that
(see Figure 3)

e ⊥ g ⊥ f ⊥ e.

Now applying the Parseval equality, we come to

(2|a|)2 = |e|2 + |g|2 + |f |2

and thus, (3) implies that
2|a| =

√
3|e|.

From this we see that T is the Sommerville tetrahedron T1 up to similarity (cf. Fig-
ure 1) and there is no other type of a tetrahedron that can be partitioned into eight
congruent subtetrahedra that are similar to the original one.
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Red refinement of a tetrahedron that produces congruent subtetrahedra is treated
also in [20]. Some authors allow mirroring of congruent tetrahedra. Zhang in [23]
presents a different proof of Theorem 1. Dissection of simplices into congruent sub-
simplices is examined also in [10] and [18].

3. Nonobtuse red refinement

Opposite each vertex of an n-simplex lies a (n− 1)-dimensional facet. For n = 1
facets are just points. For n ≥ 1 the dihedral angle α between two facets is defined
by means of the inner product of their outward unit normals ν1 and ν2,

cosα = −ν1 · ν2.

If n = 1 these normals necessarily form an angle of 180◦ and thus α = 0. Each
simplex in Rn has

(

n+1

2

)

dihedral angles.

Definition 2 If all dihedral angles of a given simplex are less than 90◦ (less than or

equal to 90◦) we say that the simplex is acute (nonobtuse).

For instance, the Sommerville tetrahedron (see Figure 1) is nonobtuse and the
regular tetrahedron is acute.

Theorem 2 If an n-simplex T for n ≥ 2 is nonobtuse (acute), then any of its lower

dimensional facets is also a nonobtuse (acute) simplex.

For the proof see [8].

Definition 3 The red refinement is said to be nonobtuse (acute) if all resulting

subsimplices are nonobtuse (acute).

Note that nonobtuse simplicial partitions lead to monotone stiffness matrices
when solving elliptic problems by linear finite element methods, see e.g. [5, 11, 16].

Remark 4 We see that the inner diagonal, which is denoted by g in Figure 3
(or M1M2 in Figure 2), is surrounded by four tetrahedra. To get a nonobtuse red re-
finement, it is necessary that all dihedral angles sharing this edge are right. However,
another more severe condition comes from the edges, which are denoted by e and f
in Figure 3. Here the angle 180◦ is bisected and thus, the corresponding two dihe-
dral angles sharing these edges have to be right. This yields a lot of restrictions on
construction of nonobtuse red refinements. For instance, in the red refinement of the
regular tetrahedron the dihedral angles at the edge g are all right, but one dihedral
angle at edges e and f is greater than 109◦. The red refinement of the (nonobtuse)
cube corner terahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), produces
angles greater than 125◦ at e and f .

On the other hand, the red refinement of the path simplex yields only path
subsimplices in any dimension n ≥ 2 (cf. Figure 2). The path simplex in its basic
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position can be stretched or shrinked along any coordinate axis xi and we still get
nonobtuse red refinement. If n = 3 then there are six path subtetrahedra T that are
congruent with the original path tetrahedron. The remaining two are mirror images
of T (see Figure 2 and Remark 2). The red refinement of the Sommerville tetrahedron
also produces nonobtuse tetrahedra which follows from Theorem 1. This is due to
the fact that the Sommerville tetrahedron is the union of 4 path subtetrahedra.
In [12] we introduced the so-called yellow refinement which produces only nonobtuse
subtetrahedra provided the initial tetrahedron is nonobtuse and contains the centre
of its circumscribed ball.

Remark 5 Consider now a red refinement of a 4-simplex S, i.e., it is partitioned
into 16 subsimplices. Then we get a situation which is a little bit difficult to imagine.
Namely, we first cut off 5 congruent corner subsimplices that are similar to S. The
remaining polytopic domain then has 10 three-dimensional facets and it is partitioned
into 16 − 5 = 11 subsimplices.

Theorem 3 There is no 4-simplex whose three-dimensional facets are all Sommer-

ville tetrahedra.

Proof: From the well-known Euler-Poincaré formula we find that a 4-simplex has
5 vertices, 10 edges, 10 triangular faces, and there are 5 tetrahedral three-dimensional
facets.

e

h

a
c

bd

g

f

i

j

Figure 4: Schematic illustration of a 4-simplex and notation of its edges.

Now we show that there is no 4-simplex whose five facets are all the Sommerville
tetrahedra T1. Suppose to the contrary that such 4-simplex S exists. Denote its
10 edges by a, b, c, d, e, f, g, h, i, j as indicated in Figure 4. Let one of its facets be
the Sommerville tetrahedron T1. Without lost of generality we may assume that its
edges satisfy |a| = |b| = |c| = |d| =

√
3 and |e| = |f | = 2. Since e is opposite to h

and i; and f is opposite to g and j, we get

|g| = |h| = |i| = |j| = 2.

However, this relation does not allow that all five facets are the Sommerville tetra-
hedra T1, since the edges g, h, i, j contain a common point and thus their pairs are
not opposite. This is a contradiction.
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Theorem 4 The red refinement of an acute simplex for n > 2 never yields subsim-

plices that would be all mutually congruent.

Proof: Assume, on the contrary, that there exists an acute simplex whose red
refinement produces mutually congruent subsimplicies, which should be then, obvi-
ously, acute as the exterior subsimplices are always similar to the father simplex. As
the red refinement of the simplex implies by induction the red refinement of all its
lower-dimensional facets (cf. Remark 2), any of its three-dimensional facets would
be partitioned as in Figure 3. But then some nonacute angles between lower-dimen-
sional faces appear, since the inner edge g is surrounded by four tetrahedra. This
contradicts by Theorem 2 to the assumption that all subsimplicies are acute.

Remark 6 In fact, from the above proof we observe even a stronger result than the
one stated in Theorem 4. The red refinement of n-simplex never produces only acute
subsimplices for n > 2.
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[8] Fiedler, M.: Über qualitative Winkeleigenschaften der Simplexe. Czechoslovak
Math. J. 7 (1957), 463–476.

[9] Freudenthal, H.: Simplizialzerlegungen von bescharaenkter. Flachheit. Ann. of
Math. in Sci. and Engrg. 43 (1942), 580–582.

[10] Hertel, E.: Self-similar simplices. Beiträge Algebra Geom. 41 (2000), 589–595.
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Abstract

In this paper, we present a parallel scheme to solve the population balance equa-
tions based on the method of characteristics and the finite element discretization. The
application of the method of characteristics transform the higher dimensional popula-
tion balance equation into a series of lower dimensional convection-diffusion-reaction
equations which can be solved in a parallel way. Some numerical results are presented
to show the accuracy and efficiency.

1. Introduction

In this paper, we propose a parallel scheme to solve the population balance equa-
tion (PBE) based on the application of the method of characteristics and the finite
element method. The PBEs aries from the model of the industrial crystallization
process (see, e.g., [7, 11, 12] and the references cited therein). Recently, more and
more researchers are interested in the numerical methods for PBEs (c.f. [1, 5, 6, 7]).
In PBEs, besides the normal space and time variables, the distribution of entities
also depends on their own properties which are referred to as internal coordinates.
It is a high dimensional system of equations which is a big challenge from the com-
putational point of view. In order to overcome this difficulty, we use the method
of characteristics (c.f. [2, 4]) to transfer the original problem to a series of lower-
dimensional convection-diffusion-reaction problems which are defined on the char-
acteristics curves and the spatial directions. Based on the data structure for the
method of characteristics, a parallel implementation can be applied to do the simu-
lation process that can improve the computational efficiency.

So far, there exists the alternating direction (operator splitting) method for the
PBE by decomposing the original problem into two unsteady subproblems of smaller
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complexity (see, e.g., [1, 5, 6]). In the two subproblems, the ordering of the data
for the solution needs to be different, since they are discretized in different direc-
tion (c.f. [1]). It is not so suitable for the parallel implementation and prevents the
further improvement of the computation efficiency for the PBE.

In the present paper, we use the method of characteristics to transform the PBE
into a series of convection-diffusion-reaction equations on the characteristic curves
in each time step. Then the finite element method is applied to solve the series of
convection-diffusion-reaction problems. Furthermore, based on the data structure of
the numerical scheme, a parallel scheme is constructed to solve the PBE based on
the distributed memory. Some numerical results are provided to check the efficiency
of this parallel method.

The rest of the paper will go as follows: Section 2 introduces the model problem
under consideration and defines some notation. In Section 3, we describe the method
of characteristics for solving the PBE. The finite element discretization for the PBE
is described in Section 4. Then Section 5 gives the parallel implementation way
for the full discrete form of the PBE. The numerical results are given in Section 6
to validate the efficiency of the numerical method proposed in this paper. Some
concluding remarks are given in the last section.

2. Model problem

Let Ωx be a simply connected domain inRd (d = 2 or 3) with Lipschitz continuous
boundary ∂Ωx, Ωℓ = [ℓmin, ℓmax] ⊂ R, and T > 0. The state of the individual particle
in the PBE equation may consists of the external coordinate x (x = (x1, . . . , xd)),
denoting its position in the physical space, and the internal coordinate ℓ, representing
the properties of particles, such as size, volume, temperature etc. A PBE for a solid
process such as crystallization with one internal coordinate can be described by the
following partial differential equation:

Find z : (0, T ]× Ωℓ × Ωx → R such that















∂z/∂t +G(ℓ)∂ℓz − ε∆xz + b(x) · ∇xz = f(t, ℓ,x) in (0, T ]× Ωℓ × Ωx,
z(0, ℓ,x) = zinit(ℓ,x) in Ωℓ × Ωx,
z(t, ℓmin,x) = zbdry(t,x) on (0, T ]× Ωx,
z(t, ℓ,x) = 0 on (0, T ]× Ωℓ × ∂Ωx,

(1)

where the diffusion coefficient ε > 0 is a given constant, ∆x and ∇x denote the
Laplacian and gradient with respect to x, respectively, b is a given velocity and
satisfies ∇x ·b = 0, and f is a source function. Here G(ℓ) > 0 represents the growth
rate of the particles that depends on ℓ but is independent of x and t. Furthermore,
let us assume the data G(ℓ), b, f , zinit and zbdry are sufficiently smooth functions for
our error estimate analysis.
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Now we introduce some notation of the function spaces (see [2, 3]). Let Hm(Ωx)
denote the standard Sobolev space of functions with derivatives up to m in L2(Ωx)
and the norm is defined by

‖v‖Hm(Ωx) =





∫

Ωx

m
∑

0≤|α|≤m

∣

∣

∣

∂αv

∂xα

∣

∣

∣

2

dx





1/2

,

where α denote a non-negative multi-index α = {α1, . . . , αd}, |α| =
∑

1≤j≤d αj, and

∂αv

∂αx
=

∂α1...αdv

∂xα1

1 . . . xαd

d

.

We use (·, ·)x and ‖ · ‖L2(Ωx) to denote the L2-inner product and the associated norm
in Ωx, respectively, which are defined as follows

(v, w)x =

∫

Ωx

vwdx and ‖v‖2L2(Ωx) = (v, v)x.

Let X be a Banach space with the norm ‖ · ‖X . Then we define

C(Ωℓ;X) =
{

v : Ωℓ → X : v is continuous
}

,

Wm,∞(Ωℓ;X) =
{

v : Ωℓ → X :
∥

∥

∥

∂jv

∂ℓj

∥

∥

∥

X
<∞, 0 ≤ j ≤ m

}

,

Wm,∞((0, T ];X) =
{

v : (0, T ] → X :
∥

∥

∥

∂jv

∂tj

∥

∥

∥

X
<∞, 0 ≤ j ≤ m

}

,

where the derivatives ∂jv/∂ℓj and ∂jv/∂tj are understood in the sense of distributions
on Ωℓ and (0, T ], respectively. The norms in the above defined spaces are given as
follows

‖v‖C(Ωℓ;X) = sup
ℓ∈Ωℓ

‖v(ℓ)‖X,

‖v‖Wm,∞(Ωℓ;X) = max
0≤j≤m

sup
ℓ∈Ωℓ

∥

∥

∥

∂jv

∂ℓj

∥

∥

∥

X
,

‖v‖Wm,∞((0,T ];X) = max
0≤j≤m

sup
t∈(0,T ]

∥

∥

∥

∂jv

∂tj

∥

∥

∥

X
.

For spaces X , Y and Z, we use the short notation Z(Y (X)) := Z((0, T ]; (Y (Ωℓ;X))
in this paper.

3. Method of characteristics

In this section, we describe the method of characteristics (c.f. [2, 4, 9]) for the
PBE (1). The reason we adopt this method for the discretization in the product space
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(0, T ]× Ωℓ is that it has the suitable data structure for the parallel implementation
which will be discussed in the following sections.

First we set

ψ(t, ℓ) = (1 +G(ℓ)2)1/2.

Let the characteristic direction associated with the hyperbolic part of (1), ∂z/∂t +
G(ℓ)∂z/∂ℓ, be denoted by s(t). Then

∂

∂s
=

1

ψ

∂

∂t
+
G(ℓ)

ψ

∂

∂ℓ
. (2)

Then (1) can be written as














ψ∂z/∂s − ε∆xz + b(x) · ∇xz = f in (0, T ]× Ωℓ × Ωx,
z(0, ℓ,x) = zinit(ℓ,x) in Ωℓ × Ωx,
z(t, ℓmin,x) = zbdry(t,x) on (0, T ]× Ωx,
z(t, ℓ,x) = 0 on (0, T ]× Ωℓ × ∂Ωx.

(3)

We use uniform partitions for the time interval (0, T ] and the internal coordinate
interval Ωℓ, respectively. Let τ = T/N , ι = (ℓmax−ℓmin)/M , tn = nτ , n = 0, 1, . . . , N
and ℓm = ℓmin +mι, m = 0, 1, . . . ,M . In order to satisfy the stability condition, we
set

τ ≤ ι

maxℓmin≤ℓ≤ℓmax
G(ℓ)

. (4)

Then starting with z(0, ℓ,x) = zinit, z(t, ℓmin,x) = zbdry(t,x), the equation (3) can
be discreted in each sub-intervals (tn−1, tn] × (ℓm−1, ℓm] × Ωx (n = 1, 2, . . . , N and
m = 1, 2, . . . ,M) as follows.

First we compute

ℓ̌m = ℓm − τG(ℓm). (5)

Actually, this is a first order discretization to obtain the approximation at the time
level t = tn−1 for the following characteristic ordinary differential equation (c.f. [4]):

{

dℓ/dt = G(ℓ) in [tn−1, tn),
ℓ(tn) = ℓm.

(6)

From the condition (4), we have ℓ̌m ≥ ℓmin for m ≥ 1. Then we compute the
direction differential ψ ∂z

∂s
at the node (tn, ℓm) in the following way

ψ(tn, ℓm)
∂z

∂s
(tn, ℓm,x) ≈ ψ(tn, ℓm)

z(tn, ℓm,x)− ž(tn−1, ℓ̌m,x)

(τ 2 + (ℓm − ℓ̌m)2)1/2

=
z(tn, ℓm,x)− ž(tn−1, ℓ̌m,x)

τ
, (7)
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where ž (tn−1, ℓ̌m,x) := αn
m z (t

n−1, ℓm−1,x) + (1 − αn
m) z (t

n−1, ℓm,x) with αn
m =

(ℓm − ℓ̌m)/ι.
In order to give the semi-discrete form of the PBE, we set znm(x) ≈ z(tn, ℓm,x).

Then the semi-discrete form of the PBE can be defined as follows:














zn
m
(x)−žn

m
(x)

τ
− ε∆xz

n
m(x) + b(x)∇xz

n
m(x) = fn

m(x) in Ωx,
z0m(x) = zminit(x) for x ∈ Ωx,
zn0 (x) = zbdry(t

n,x) for (0, T ]× Ωx,
znm(x) = 0 for m = 1, 2, . . . ,M on ∂Ωx ,

(8)

where fn
m(x) = f(tn, ℓm,x), ž

n
m(x) = αn

mz
n−1
m−1(x) + (1− αn

m)z
n−1
m (x).

From the Taylor expansion method, we can derive the following error estimate
for the semi-discrete form (8)

‖z(tn, ℓm,x)− znm(x)‖C(X) ≤ Cτ‖z(t, ℓ,x)‖W 2,∞(W 1,∞(X)), (9)

where the space X can be L2(Ωx) or H
1(Ωx).

4. Finite element method

In this section, we give the fully discrete form of the PBE by the finite element
method. Let Vh be a finite element subspace of H1

0 (Ωx) which has the k-th order of
accuracy (c.f. [2, 3]):

inf
vh∈Vh

‖u− vh‖H1(Ωx) ≤ Chk‖u‖Hm+1(Ωx) ∀u ∈ Hm+1(Ωx). (10)

and

inf
vh∈Vh

‖u− vh‖L2(Ωx) ≤ Chk+1‖u‖Hm+1(Ωx) ∀u ∈ Hm+1(Ωx). (11)

Based on the finite element space Vh, we can define the fully discrete form for the
PBE as follows:

For the n-th time step t = tn and m = 0, 1, . . . ,M , find znm,h ∈ Vh such that











(

zn
m,h

−žn
m,h

τ
, vh

)

+ a(znm,h, vh) = (fn
m(x), vh) ∀vh ∈ Vh,

a0(z
0
m,h, vh) = a0(zinit(ℓm,x), vh) ∀vh ∈ Vh, m = 1, . . . ,M,

a0(z
n
0,h, vh) = a0(zbdry(t

n,x), vh) ∀vh ∈ Vh,

(12)

where žnm,h = αn
mz

n−1
m−1,h + (1− αn

m)z
n−1
m,h with αn

m being defined in Section 3 and

a(u, v) =

∫

Ωx

(

ε∇u · ∇v + b(x) · ∇u v
)

dx,

a0(u, v) =

∫

Ωx

∇u · ∇vdx.
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From the standard error estimate theory of the finite element method (c.f. [2, 3]),
the fully discrete form (12) has the following error estimates

max
1≤m≤M

‖z(T, ℓm,x)− zNm,h‖H1(Ωx) ≤ C(τ + hk)‖z‖W 2,∞(W 1,∞(Hk+1(Ωx))) (13)

and

max
1≤m≤M

‖z(T, ℓm,x)− zNm,h‖L2(Ωx) ≤ C(τ + hk+1)‖z‖W 2,∞(W 1,∞(Hk+1(Ωx))). (14)

5. A parallel way

In this section, we present a parallel scheme to solve the PBE (1) based on the full
discrete (12). Fortunately, from (12), we can find that the finite element equation
is independent for each m in any time step tn. Based on this property, we can
construct a type of parallel scheme to implement the full discretization of the fully
discrete form (12).

Assume we use P processors to compute the PBE. Decompose the set
{0, 1, 2, . . . ,M} into P subsets m1,m2, . . . ,mP such that m1 = {0, 1, . . . , m1 − 1},
mp={mp−1, mp−1+1, . . . , mp− 1} (p=2, . . . , P − 1) and mP ={mP−1, . . . , mP − 1}.
In the p-th processor, the equation (12) is solved on the sub-intervals (tn−1, tn] ×
(ℓmp−1

, ℓmp−1] × Ωx (n = 1, 2, . . . , N , p = 1, 2, . . . , P , ℓ0 = ℓmin and ℓM = ℓmax). Be-
cause the growth rate of the particlesG(ℓ) is positive, the dependence of each point ℓm
is on the left (ℓ < ℓm). This means that the solution zn−1

mp−1,h in the p-th processor as

the initial condition for the (p+ 1)-th processor computing at the time step tn.
We allocate the memory in the p-th processor (p = 1, . . . , P ) to save the solutions

znmp−1,h
, . . . , znmp−1,h and the p-th processor (p = 1, . . . , P − 1) should send its saved

solutions to the next (p+1)-th processor after each time step computation. Obviously,
for p = 1, we need to use the boundary condition zbdry(t,x). Similarly for p = P ,
the sending of solutions is not required since it is the last processor. Based on this
distribution of the memory and the computation of the scheme (12), we can construct
the following parallel algorithm for the PBE.

Algorithm 5.1. Parallel algorithm for PBE

For n = 1, 2, . . . , N do

1. On each processor, compute the solution znm,h for m ∈ mp (p = 1, 2, . . . , P ) in

sub-interval (tn−1, tn]× (ℓmp−1
, ℓmp−1].

2. For p = 1, 2, . . . , P − 1, send the solutions obtained in the p-th processor

znm,h (m ∈ mp) to the (p+ 1)-th processor.

3. If n < N , set n := n+ 1 and go to Step 1. Else stop.
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6. Numerical results

In this section, we provide some numerical results to validate the numerical
scheme proposed in this paper. Let Ωx = [0, 1]× [0, 1], Ωℓ = [0, 1], T = 1, ε = 1, and
b(x) = (1, 1)T . We chose the functions f(t, ℓ,x), zinit(ℓ,x) and zbdry(t,x) such that
the exact solution is

z(t, ℓ, x, y) = e−at sin(πℓ) sin(πx) sin(πy)

with a = 0.1. The growth rate of the particles is G(ℓ) = 1
2
+ 2(1− ℓ)ℓ.

First, we check the convergence order for the error estimates

‖e‖0 = max
1≤m≤M

‖z(T, ℓm,x)− znm,h‖L2(Ωx) (15)

and

‖e‖1 = max
1≤m≤M

‖z(T, ℓm,x)− znm,h‖H1(Ωx). (16)

The convergence order of the linear and quadratic finite element method for the
discretization in Ωx is shown in Tables 1 and 2. We see that the experimental results
of convergence approach to the theoretically predicated values both for linear and
quadratic elements.

mesh size h ‖e‖0 ‖e‖1
error order error order

2−2 4.5702E-01 2.6897E-00
2−3 1.4872E-01 1.6197 1.5128E-00 0.8302
2−4 4.0481E-02 1.8773 7.8083E-01 0.9541
2−5 1.0318E-02 1.9721 3.9359E-01 0.9883
2−6 2.7230E-03 1.9219 1.9720E-01 0.9970

Table 1: Errors (15) and (16) and the corresponding rates of convergence for linear
element with τ = ι = h2.

mesh size h ‖e‖0 ‖e‖1
error order error order

2−1 6.0137E-01 2.5073E-00
2−2 6.3958E-02 3.2331 8.5316E-01 1.5552
2−3 7.4660E-03 3.0987 2.3528E-01 1.8584
2−4 9.5200E-04 2.9713 6.0522E-02 1.9588

Table 2: Errors (15) and (16) and the corresponding rates of convergence for
quadratic element with τ = ι = h3.

146



size of internal ‖e‖0 ‖e‖1
coordinate ι error order error order

2−2 6.3862E-01 2.8423E-00
2−3 3.4562E-01 0.8858 1.5382E-00 0.8858
2−4 1.7650E-01 0.9695 7.8427E-01 0.9718
2−5 8.8689E-02 0.9928 3.9404E-01 0.9930
2−6 4.4398E-02 0.9983 1.9726E-01 0.9980

Table 3: Errors (15) and (16) and the corresponding rates of convergence in the
internal coordinate for the quadratic element with h = ι and τ = ι2.

number of processors 8 16 32 64 128
time (in seconds) 28103.01 13555.03 6832.26 3708.71 1840.43
rate of speed up 1.00 2.07 4.11 7.57 15.26

Table 4: Strong parallel test with linear element h = 1/256, τ = 1/512 and ι = 1/512.

number in ℓ 1 2 4 8 16
8 9.30 15.30 27.51 55.28 116.42
16 9.91 15.44 28.44 59.44 117.24
32 9.85 16.98 32.02 60.93 118.89
64 10.01 17.28 32.66 63.88 121.96
128 10.21 17.98 33.55 64.27 127.63

Table 5: Weak parallel test with linear element h = 1/256: average time in seconds.

number in ℓ 1 2 4 8 16
8 11.19 16.10 27.60 60.52 120.26
16 11.26 16.43 31.54 61.36 120.83
32 12.73 18.50 35.29 68.18 131.98
64 11.20 19.63 36.39 75.43 133.55
128 12.86 20.28 38.01 73.63 146.01

Table 6: Weak parallel test with linear element h = 1/256: maximum time in
seconds.

We also check the convergence order for the method of characteristics developed
in Section 3. The corresponding numerical result are provided in Table 3. From this
table, we can find the convergence order is 1 which is the same as in (9).
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Now we come to check the efficiency of the parallel scheme of Algorithm 5.1. For
this aim, we set the discretization parameters h = 1/256, τ = ι = 1/512 and use the
linear finite element method. The run-time (in seconds) is shown in Table 4. From
Table 4, we can find that the parallel Algorithm 5.1 has a good expansibility.

We also check the run-time in each processor for different scale in each processor.
For each test, we run 8 time steps (N = 8). Tables 5 and 6 show the corresponding
run-time (in seconds) for the average time and maximum time, respectively, for all
the processors. These two tables also show that Algorithm 5.1 has good parallel
properties.

7. Concluding remarks

In this paper, we are concerned with the parallel numerical method for the PBEs
with one internal coordinate posed on the domain (0, T ]×Ωℓ×Ωx with the dimension
1 + 1 + d. The parallel scheme is based on the method of characteristics and the
finite element discretization. Some numerical results are also provided in Section 6
to demonstrate the efficiency of the proposed method.

Here, for the simplicity of the description of the numerical method, we assume
the diffusion coefficient ε to be large enough such that the diffusion is dominated.
For the convection dominated case (c.f. [1, 10, 13]), we will combine the method of
characteristics and the stabilized finite element methods (c.f. [1, 2, 13, 10]) and this
is our future work. Furthermore, the parallel method should also be applied to the
simulation of the industrial crystallization process (c.f. [11, 12]) and other similar
models (c.f. [7]).
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Jaroslav Mlýnek1, Radek Srb2

1 Department of Mathematics and Didactics of Mathematics
Technical University of Liberec
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Abstract

This article focuses on the practical possibilities of a suitable use of parallel pro-
gramming during the computational processing of heat radiation intensity optimiza-
tion across the surface of an aluminium or nickel mould. In practice, an aluminium
or nickel mould is first preheated by infrared heaters located above the outer mould
surface. Then the inner mould surface is sprinkled with a special PVC powder and
the outer mould surface is continually warmed by infrared heaters. This is an energy-
efficient way to produce artificial leathers in the car industry (e.g., the artificial leather
on a car dashboard). It is necessary to optimize the location of the heaters to approx-
imately ensure the same heat radiation intensity across the whole outer mould surface
during the warming of the mould (to obtain a uniform material structure and color
tone of the artificial leather). The problem of optimization is complicated (moulds
used in production are often very rugged, during the process of optimization we avoid
possible collisions of two heaters as well as a heater and the mould surface). Using
of gradient methods is not suitable for solving the problem (minimized function con-
tains many local extremes). A genetic algorithm is used to optimize the location of
the heaters. The optimization computation procedure is demanding in terms of the
number of numerical operations (especially when the mould volume is large and the
number of used infrared heaters is higher). In this article practical results of parallel
programming during the calculation process of the evaluation function of every created
individual (one possible solution of optimization problem using genetic algorithm) to
define its fitness are given. The numerical calculations were performed by a Matlab
code written by the authors. Numerical experiments are focused exclusively on the
opportunities to use parallel programming to accelerate the optimization procedure.

1. Introduction

This article focuses on the possibilities of parallel programming to accelerate com-
putational optimization of heat radiation intensity on a mould surface. Our mini-
mization problem has many local extremes. Using of gradient methods for finding
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Figure 1: An aluminium mould of a passenger car dashboard part.

global minimum is therefore unsuitable, that is the reason why a genetic algorithm
is used.

In practice, an aluminium or nickel mould is preheated by infrared heaters lo-
cated above the outer mould surface. It is necessary to ensure the same heat radiation
intensity (within a given tolerance) on the whole mould surface by finding suitable
locations of the heaters. In this way the same material structure and colour of the
artificial leather are assured. Moulds of different proportions (often very compli-
cated) and with weight of approximately 300 kilograms are used in production (see
Figure 1). The infrared heaters have a tubular form and their length is about 20 cen-
timeters. Every heater is equipped with a mirror located above the radiation tube,
which reflects heat radiation in a set direction.

2. The model of heat radiation on the mould surface

In this chapter a simplified mathematical model of heat radiation produced by
infrared heaters on the outer mould surface is described. The heaters and the
heated mould are represented in 3-dimensional Euclidean space E3 using the Carte-
sian coordinate system (O, x1, x2, x3) with basis vectors e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1).

Representation of a heater. A heater is represented by abscissa of length d (see
Figure 2). The location of a heater is defined by the following parameters: (i) the
coordinates of the heater centre S = [s1, s2, s3], (ii) the unit vector u = (u1, u2, u3)
of the heat radiation direction, where component u3 < 0 (i.e., the heater radiates
“downward”), (iii) the vector of the heater axis r = (r1, r2, r3). Another way to
determine the vector r is by using only the angle ϕ between the vertical projection
of vector r onto the x1x2-plane and the positive part of axis x1 (the vectors u and r
are orthogonal, 0 ≤ ϕ < π). The location of every heater Z can be defined by the
following 6 parameters

Z : (s1, s2, s3, u1, u2, ϕ). (1)
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d – heater length 

S 

u – vector  

of radiation 

direction 

x1 

x2 

x3 

o – heater axis 

r – vector  

of heater axis 

Figure 2: Schematic representation of the heater.

Representation of a mould. The outer mould surface P is described by elementary
surfaces pj, where j ∈ {1, 2, . . . , N}. We have that P = ∪pj, where j ∈ {1, 2, . . . , N}
and int pi∩ int pj = ∅ for i 6= j, 1 ≤ i, j ≤ N . Every elementary surface pj is de-
scribed by the following parameters: (i) its centre of gravity Tj = [tj1, t

j
2, t

j
3], (ii) the

unit outer normal vector vj = (vj1, v
j
2, v

j
3) at the point Tj (we suppose vj faces “up-

wards”and therefore is defined through the first two components vj1 and vj2), (iii) the
area cj of the elementary surface. Every elementary surface pj thus can be defined
by the following 6 parameters

pj : (tj1, t
j
2, t

j
3, v

j
1, v

j
2, cj). (2)

Experimental measurement of heater radiation intensity. We need to know the heat
radiation intensity in the heater surroundings to calculate the total radiation inten-
sity on the outer mould surface. The heater manufacturer has not provided the
distribution function of the heat radiation intensity in the heater surroundings. We
set up the experimental measurement of the heat radiation intensity as follows. The
location of the heater was Z : (0, 0, 0, 0, 0, 0) in accordance with relation (1), i.e.,
the centre S of the heater lay at the origin of the Cartesian coordinate system
(O, x1, x2, x3); the unit radiation vector had coordinates u = (0, 0,−1) and the vec-
tor of the heater axis had coordinates r = (1, 0, 0). We assume the heat radiation
intensity across the elementary surface pj is the same as at the centre of gravity Tj.
The heat radiation intensity at Tj depends on the position of this point (determined
by the first three parameters in the elementary surface pj given by relation (2)) and
on the direction of the outer normal vector vj at the point Tj (determined by the
fourth and fifth parameters in the elementary surface pj given by (2)). The heat
radiation intensity I in the surroundings and below the heater was experimentally
measured by a sensor at selected points a = [a1, a2, a3, a4, a5] (the first three parame-
ters describe the position of the centre of gravity of fictitious elementary surface and
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fourth and fifth parameters describe the direction of the outer normal vector in the
point [a1, a2, a3]). We can use measured values I(a) of heat radiation intensity at the
selected points a and linear interpolation function of five variables to calculate the
heat radiation intensity I(b) for the general point b = [b1, b2, b3, b4, b5] in the heater
surroundings. Interpolation formula is described in details in [2], p. 148.

The general case of a heater location. For a heater in general position, we briefly
describe the transformation of the previous Cartesian coordinate system (O, e1, e2, e3)
into a positively oriented Cartesian system (S, r, n,−u), where S is the centre of the
heater, r is the heater axis vector, and u is the direction vector of the heat radiation.
The vector n is determined by the cross product of the vectors −u and r (see more
detail in [6], p. 6) and is defined by the following relation

n = (−u)× r =

(
−
∣∣∣∣∣ u2 u3
r2 r3

∣∣∣∣∣ ,
∣∣∣∣∣ u1 u3
r1 r3

∣∣∣∣∣ ,−
∣∣∣∣∣ u1 u2
r1 r2

∣∣∣∣∣
)
.

The vectors r, u and n are normalized to have unit length. Then we can define an
orthonormal transformation matrix

A =

 r1 n1 −u1
r2 n2 −u2
r3 n3 −u3

 .
Let us recall that for the elementary surface pj, the respective triples Tj and vj
represent its centre of gravity and its outer normal vector in the Cartesian coordinate
system (O, e1, e2, e3). If S is the trio representing (in (O, e1, e2, e3)) the centre of
the heater that determines the coordinate system (S, r, n,−u), then Tj and vj are
transformed as follows(

T
′

j

)T
= AT (Tj − S)T and

(
v

′

j

)T
= ATvTj , (3)

where T
′
j and v

′
j are the coordinates in (S, r, n,−u). In this way, we transform

the general case of heater location to the measured case and we can calculate heat
radiation intensity by using linear interpolation described in previous paragraph
“Experimental measurement of heater radiation intensity” (transformed point T

′
j

and vector v
′
j correspond to the point b in previous paragraph).

Calculation of total heat radiation intensity. Now we describe the numerical compu-
tation procedure for the total heat radiation intensity on the mould surface. We
denote by Lj the set of all heaters radiating on the jth elementary surface pj
(1 ≤ j ≤ N) for the fixed locations of heaters, and Ijl the heat radiation intensity of
the lth heater on the pj elementary surface. Then the total radiation intensity Ij on
the elementary surface pj is given by the following relation

Ij =
∑
l∈Lj

Ijl . (4)
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The producer of artificial leathers recommends a constant value of heat radiation
intensity across the whole outer mould surface. Let us denote this constant value
as Irec. We can define F , the aberration of the heat radiation intensity, by the
relation

F =

∑N
j=1 |Ij − Irec|cj∑N

j=1 cj
(5)

and the aberration F̃ by the relation

F̃ =

√√√√√ N∑
j=1

(Ij − Irec)2 cj . (6)

We highlight that cj denotes the area of the elementary surface pj. We need to find
the location of heaters such that value of aberration F (alternatively aberration F̃ )
will be within specified tolerance.

3. The optimization of the location of the heaters

Function F defined by (5) has many local extremes. Using gradient methods
for finding minimum of the function F is not appropriate. If we use a gradient
method, there is a high likelihood that we find only local minimum of function F .
Therefore, we use a genetic algorithm for finding global minimum of function F
(i.e., to optimization of the locations of the heaters). A disadvantage of genetic
algorithms is its computational demand and slow convergence. A genetic algorithm is
described in more details in [1] and [3]. Implementation of this algorithm for solution
of our optimization problem is described in details in [4]. The location of every
heater is defined in accordance with the relation (1) by 6 parameters. Therefore,
6M parameters are necessary to define the locations of all M heaters. One individual
in genetic algorithm represents one possible location of the all 6M heaters. In the
algorithm we successively construct populations of individuals. Every population
includes Q individuals where every individual is a potential solution of our problem
(in contrast with the gradient methods, where only one potential solution in each
iteration exists). We use operators one-point crossover (operator that combines two
individual to produce a new individual) and mutation (operator that alters one
or more values in an individual) during the generation of new individuals. The
generated individuals are saved in the matrix BQ×6M . Every row of this matrix
represents one individual. We seek the individual ymin ∈ C satisfying the condition

F (ymin) = min{F (y); y ∈ C}, (7)

where C ⊂ E6M is the searched set. Every element of C is formed by a set of 6M
allowable parameters and this set defines just one constellation of the heaters above
the mould. The identification of the individual ymin defined by (7) is not realistic in
practice. But we are able to determine an optimized solution yopt. Now we describe
particular steps of the genetic algorithm that is used.
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Genetic algorithm
Input: the specimen y1 (initial individual), ε1 - the specified accuracy of the calcu-
lation.
Internal computation:
1. create an initial population of Q individuals,
2.a/ evaluate all the individuals of the population (calculate F (y) for every individ-
ual y),
b/ sort values F (y) of all individuals y into ascending order and organize individuals y

accordingly,
c/ store the individuals y into the matrix B,
3. repeat until min{F (y); y ∈ B} < ε1,
a/ choose randomly between the crossover operation and the mutation operation,
b/ if the crossover operation is chosen then

randomly select (so-called roulette-wheel selection) a pair of individuals
(parents), execute the crossover operation and create two new individuals

else
randomly select (roulette-wheel selection) an individual y, execute
the mutation operation, create two new individuals

end if,
c/ calculate F (y) for the two new individuals (penalize an individual in the case of
the collision of heaters or the collision of a heater and the mould surface), d/ sort
as in step 2.b/, e/ take the first Q individuals y with the smallest values F (y) and
store them in the matrix B
end repeat.
Output: the first row of matrix B contains the best found individual.

4. Use of parallel programming during the calculation

Some numerical solutions to practical examples of heat radiation intensity opti-
mization, including graphical representation of the locations of the infrared heaters
above the outer mold surface, are published in articles [4] and [5].

This section focuses exclusively on the possibility to use parallel programming
to accelerate the optimization procedure. Optimization of locations of heaters using
the genetic algorithm requires a number of numerical operations. The calculation of
aberration F (y) or F̃ (y) given by the relations (5) and (6) respectively is computa-
tionally the most demanding part of the genetic algorithm and is performed for every
created new individual y (where value F (y) defines the fitness of the individual y).
Before determining the value F (y) or F̃ (y), we have to perform the following com-
putational steps for a given individual y (one of the possible locations of heaters):
(i) for every heater Zi (1 ≤ i ≤ M) determine the heat radiation intensity over all
elementary surfaces pj (1 ≤ j ≤ N)(use the relation (3) for pj, interpolate the value
of the heat radiation intensity of heater Zi on the pj using the interpolation formula,
(ii) calculate the total heat radiation intensity Ij on pj using the relation (4) for
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all pj. The calculations of heat radiation intensities of the heaters Zi and Zk (i 6= k)
for each and every elementary surfaces pj are completely independent. The calcula-
tion time of F (y) or F̃ (y) and thus the overall time of the optimization procedure
can be significantly reduced by using the tools of parallel programming. For this
experiment we used a PC with 3GB RAM, CPU 2x AMD Athlon 64 X2 Dual Core
2.81 GHz. We performed experiments for one, two and four processors.

The tests are carried out for the aluminium mould of a passenger car dashboard
(see Figure 1). The volume of the mould was 0.6 × 0.4 × 0.12 m3, the number of
elementary surfaces was N = 2 178. The infrared heaters used were all the same
type (capacity 1 600 W, length 15 cm, width 4 cm), the manufacturer of artificial
leathers recommended heat radiation intensity Irec = 47 kW/m2. The calculations
were performed using a Matlab code (including parallel programming) written by the
authors. First, we focused on the real time of the calculation of the aberration F (y)
defined by relation (5). Real times of the calculation of F (y) for different numbers
of processors used and different numbers of heaters are presented in Table 1. The
times in Table 1 required to the calculation of F (y) were measured on the specified
computer.

The total duration of the optimization procedure depends on the number of
processors used, the number of heaters used and on the number of iterations of the
genetic algorithm (two new individuals are generated in one iteration). The results
are presented in Table 2. The maximum number of iterations in our tests was 100 000.
We did not obtain better optimized solution after using a higher number of iterations.
The times in Table 2 of total duration of optimization were measured as in Table 1
on the specified computer.

The duration of the optimization procedure can be significantly accelerated by
using parallel programming to calculate F (y) as is shown in Table 2. The accel-
eration of the optimization procedure is effective especially with higher number of
infrared heaters and large number of elementary surfaces of the mould surface.

Number Number of used processors
of applied 1 2 4

heaters Time of value F (y) calculation [s]

10 0.2510 0.1447 0.0915
20 0.4928 0.3129 0.2229
30 0.7853 0.4463 0.2769
40 1.0470 0.5951 0.3692
50 1.3088 0.7439 0.4615

Table 1: Time required for the calculation of value F (y).
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Number Number Number of used processors
of applied of GA 1 2 4

heaters iterations Time of optimization [h]

10 20,000 1.3336 0.8366 0.5882
30 20,000 4.2792 2.6805 1.8812
50 20,000 7.2732 4.5499 3.1882
10 50,000 3.3340 2.0916 1.4704
30 50,000 10.6979 6.7016 4.7030
50 50,000 18.1831 11.3747 7.9706
10 100,000 6.6680 4.1832 2.9408
30 100,000 21.3958 13.4027 9.4061
50 100,000 36.3662 22.7495 15.9412

Table 2: Time required for the optimization procedure.
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ference Programs and Algorithms of Numerical Mathematics, Horńı Maxov,
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Abstract

In this article, the attention is paid to Fourier, wavelet and Radon transforms.
A short description of them is given. Their application in signal processing especially
for repairing sound and reconstructing image is outlined together with several simple
examples.

1. Introduction

In this survey paper we will deal with such integral transforms that are used in the
image or sound processing. The transforms, we will speak about, were defined already
long time ago. Joseph Fourier approximated 2π periodic functions by trigonometric
series in 1778. The first wavelet basis – Haar wavelets – was proposed as an example
of a countable orthonormal system in L2(R) in 1909. Johann Radon described the
reconstruction of a function from its line integral values in his article in 1917. The
entry of computers amplified the importance of these transforms in the second half of
the past century, because the above named transforms became the theoretical base
of algorithms that are used in signal processing or in computer tomography. In such
a way they give possibilities to remove noise from the sound or visual recordings, to
compress the image data before their transmission, to find the trend in given time
series or to identify malignant tumors in a human body.

The outline of this article is as follows. Some basic information about the defini-
tion and construction of the Fourier transform together with examples is presented
in Section 2. The wavelet transform is described and applied on the given data in
Section 3. The Radon transform and its usage in medicine is discussed in Section 4.

2. Fourier transform

For f ∈ L1(R), the relation

F (ω) =
∫ ∞
−∞

f(x)e2πiωx dx, ω ∈ R, (1)
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represents the continuous Fourier transform (FT) of a function f. The integral trans-
form

F−1(x) =
∫ ∞
−∞

F (ω)e−2πiωx dω, x ∈ R, (2)

is the inverse Fourier transform.
The discrete analogies of the relations (1) and (2) are suitable for computer imple-

mentation. If sampled values f0, . . . , fN−1 of a function f are given, the components
of the discrete Fourier transform (DFT) are defined by

Fk =
N−1∑
j=0

fje
2πijk
N , k = 0, . . . , N − 1, (3)

and the components of the discrete inverse Fourier transform (DIFT)

fj =
1

N

N−1∑
k=0

Fke
−2πijk
N , j = 0, . . . , N − 1. (4)

The number of operations that are used for calculation of the DFT by relation (3)
has the order O(N2). But there is an effective numerical algorithm of fast Fourier
tramsform (FFT) that allows to reduce the number of used operations. This al-
gorithm is based on the properties of exponential functions and on an ingenious
arrangement of computation that is given in the next lemma (see [5]).

Lemma 1 (Danielson-Lanczos, 1942) Let N be even. Then

Fk = F 0
k +W kF 1

k , k = 0, . . . , N − 1, (5)

where F 0
k =

∑N
2
−1

j=0 W jkf2j, F
1
k =

∑N
2
−1

j=0 W jkf2j+1, W = e
2πi
N and W jk = e

2πijk
N .

Lemma 1 can be applied recurrentlyM times ifN = 2M . The FFT in the following
way reduces the order of the number of operations that are necessary to compute the
Fourier coefficients from O(N2) to O(N logN). Note that the schematic expression
of the computation that is generated by relation (5) looks like a butterfly. This is
the reason, why the name “butterfly” is used for one loop of the FFT process.

Example 1 The function f(x) = sin 1500x is impaired by random noise. The
DFT for N = 200 values is computed and expressed in Figure 2.
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1.5
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Figure 1: The original signal
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Figure 2: The signal after the FT
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The signal is a quantity that depends on one or more variables. For example,
a sound is a one dimensional signal that depends on time and a digital photograph
is two dimensional signal over a matrix of pixels. While a signal gives information
about variability with respect to independent variables, its FT gives information
about frequencies that occur in the given signal. The knowledge of the frequency
spectrum of a signal is important, because it helps to analyze this signal. The low
frequencies are important for identification of the signal. The higher frequencies
often represent the noise.

In the signal processing, the DFT is applied on the given data at first. This way
the time depending function changes on the frequency depending function. Then,
the received Fourier coeficients can be modified according to monitored aims. For
instance, the noise can be removed from the given signal if the Fourier coefficients
with frequency higher than the given treshold λ are put to zero. A signal is com-
primed when the majority of Fourier coefficients is neglected. The DIFT is applied
on the rest of the Fourier coefficients in the end.

The real part of the FT – the discrete cosine transform (DCT)

Ckm =
N−1∑
j=0

P−1∑
l=0

fjl cos
2πijk

N
cos

2πilm

P
, k = 0, . . . , N − 1, m = 0, . . . , P − 1, (6)

is the proper tool if some real 2D data are processed. For instance, the DCT is used
for compression of an image in the JPEG format.

Example 2 Removing noise from the given data by hard tresholding (λ=0.5).
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Figure 3: The noised data
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Figure 4: The DCT of
the noised data
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Figure 5: The data with
removed noise

When the DFT is applied to data, the information about the frequency is received
but the information about the time is lost. It means that the DFT is suitable for
an analysis of stationary signals and it does not detect the jump changes and the
trends that occur in non-stationary signals. The time localization of the signal can
be reached if the short time Fourier transform (STFT) is used. The STFT is defined
by

F (ω, t) =
∫ ∞
−∞

f(x)wr

(
x− t
r

)
e−iωx dx, (7)

where wr(x) = w(x
r
) is a window (a function smooth enough that is compactly

supported). The parameter r allows to adjust the length of the analyzed signal
segment. The size is the same for all windows in the discrete version of STFT.
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3. Wavelet transform

Let f be in L2(R) and ψ be the wavelet (i.e. a function that can be imagined like
a small wave that decreases quickly to 0 in ±∞). The wavelet transform is defined
by

Wψ(a, b) =
1

|a|

∫ ∞
−∞

f(x)ψ

(
x− b
a

)
dx. (8)

Here a is a scale1 and b is a translation. If a ∈ R and b ∈ R we speak about the
continuous wavelet transform (CWT).

Example 3 The CWT of the given signal using the Mexican hat wavelet ψ(x) =
2√
3
π−1/4(1−x2)e−x2/2 is done. The corresponding scalogram (i.e. the graph in which

the density of energy E(a, b) = |(Wψf)(a, b)|2 for the scale a and for the position b is
expressed) is given in Figure 7. Here, large absolute values of the wavelet coefficients
are shown darker.

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0
f HxL

Figure 6: The original signal
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Figure 7: The scalogram

If a and b are discrete values we speak about the discrete wavelet transform
(DWT). The diadic dilatation a = 2j and the translation b = k, where j, k ∈ Z, are
used for the sake of the computation effectivity. The DWT has then the form

Wj,k = 2
j
2

∫ ∞
−∞

f(x)ψ(2jx− k) dx. (9)

The discrete reconstruction is realized by

f(x) =
∑
j∈Z

∑
k∈Z

2
j
2Wj,kψ(2jx− k). (10)

But the system 2
j
2ψ(2jx− k) does not need to be orthonormal for general func-

tions ψ. One of possibilities how to receive an orthonormal basis in L2(R) is to use
the multiresolution analysis (MRA)2, where the spaces Vj ⊂ L2(R) (j ∈ Z) that
satisfy

Vj ⊂ Vj+1;
⋂
j∈Z

Vj = {0};
⋃
j∈Z

Vj = L2(R);

1Scales and the frequencies are connected: Higher scales correspond to lower frequencies.
2The construction of waveles by means of the MRA based on the existence of a scale function ϕ

was proposed by Mallat in 1988.
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∃ϕ ∈ V0 : {ϕ(x− k)}k∈Z is a complete orthogonal set in L2(R);

f ∈ V0 ⇔ f(2jx) ∈ Vj
are constructed.

It follows from the properties of the spaces Vj given above that there exist the
subspaces Wj orthogonal to Vj such that Vj+1 = Vj ⊕Wj.

If {Vj} is the MRA and ϕ is the scaling function that satisfies the dilatation
equation

ϕ(x) =
√

2
∑
k∈Z

ukϕ(2x− k), (11)

then
ψ(x) =

√
2
∑
k∈Z

vkϕ(2x− k), where vk = (−1)k−1u1−k (12)

is the associated wavelet correspondig to the MRA.
The spaces Vj resp. Wj are generated by functions that are dilatations and

translations of the scaling function and the associated wavelet function3

Vj = span{ϕj,k}j,k∈Z , where ϕj,k(x) = 2j/2ϕ(2jx− k), (13)

Wj = span{ψj,k}j,k∈Z , where ψj,k(x) = 2j/2ψ(2jx− k). (14)

The space Vj+1 can be interpreted as an approximation space in L2(R) and Vj+1 =
V0⊕W0⊕W1⊕ · · · ⊕Wj. It means that every function f ∈ L2(R) can be written as

f(x) =
∑
k∈Z

a0,kϕ0,k(x) +
∑
j≥0

∑
k∈Z

bj,kψj,k(x), (15)

where a0,k are the scaling coefficients and bj,k are the wavelet coefficients of f on the
level j.

Let 〈f, g〉 be the inner product in L2(R). In what follow, we will denote the
vectors of wavelet coefficients of f on the level j by

bj = (bj,k)k∈Z , where bjk = 〈f, ψj,k〉, (16)

and the vectors of scaling coefficients of f on the level j as

aj = (aj,k)k∈Z , where aj,k = 〈f, ϕj,k〉. (17)

Computation of wavelet coefficients is divided in two parts in the Mallat algorithm
(see [3]).

3Note that multivariable wavelets are constructed in the form of the tensor product. For instance,
a 2D MRA on the first level can be constructed from a decomposition

V 1
1 ⊕ V 2

1 =
(
V 1
0 ⊗ V 2

0

)
⊕
(
V 1
0 ⊗W 2

0

)
⊕
(
W 1

0 ⊗ V 2
0

)
⊕
(
W 1

0 ⊗W 2
0

)
and the wavelet basis is given by {ϕ0,k ⊗ ϕ0,l}l∈Z ∪ {ϕ0,k ⊗ ψ0,l, ψ0,k ⊗ ϕ0,l, ψ0,k ⊗ ψ0,l}l∈Z .
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In the first one – decompositon, the wavelet coefficients are computed from the
given data: The vector am of the scaling coefficients of function f is given for m ∈ Z
large enough. The wavelet transform bm−1, . . . ,bm−l, am−l of f is computed for
a chosen l ∈ N in the following way:

bj = D(aj+1 ∗ ṽ), aj = D(aj+1 ∗ ũ), j = m− 1, . . . ,m− l, (18)

where D(zn) = z2n is the downsampling operator, z̃n = z−n is the operator of
conjugated reflexion and bj+1 ∗ ũ is the convolution of the vector bj+1 with the
vector ũ.

In the second part – reconstruction, the vector am is constructed from the received
set bm−1, . . . ,bm−l, am−l in the following way:

aj+1 = (U(aj)) ∗ u + (U(bj)) ∗ v, j = m− l, . . . ,m− 1, (19)

where U(zn) = zn/2 for n even and zero while for n odd it is the operator of upsam-
pling.

This process is realized by using proper quadratic mirror filters in signal process-
ing. The given vector of values that represents a signal goes through the lowpass
filter and highpass filter in the first phases of computation. The approximation coef-
ficients aj and detail coefficients bj are received. Note that the approximation coeffi-
cients belong to low frequencies that represent trends and the details belong to high
frequencies that can be interpreted as noise. The received outputs are downsampled
and they can be filtered again. It is possible to express this process graphically in the
form of the completing wavelet tree. In the second phasis the received approximation
and details are upsampled and then they are filtered by conjugate filters.

Before reconstruction it is possible to modify the wavelet coefficients. For exam-
ple, noise is removed from the given signal, if the wavelet coefficients bi,j that have
smaller frequecy than the chosen treshold λ are set to zero. Also the soft threshold-

ing with the modified cofficients b̃j,k =

{
0 if bj,k < λ,

sgn bj,k |bj,k − λ| in other cases
can be

used.

Example 4 Removing noise from the given data by means of the wavelet trans-
form. Here, the Daubechies wavelet Db4 was used.
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Figure 8: The noised data
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Figure 9: The data with
removed noise
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If a 2D visual signal has to be compressed, it is decomposed into horizontal,
vertical, diagonal and approximation coefficients in the beginning. Only the approx-
imation coefficients are used for the next decomposition, because only they hold the
important information. The received details are cut on asked level. The DWT with
the hard tresholding is used in the JPEG2000 format.

Example 5 The wavelet transform of the given image.

Figure 10: The original image
Figure 11: The decomposition of the
image up to refinement level 2

4. Radon transform

Generally, the Radon transform4 of a function f from the Schwartz space S(Rn)
is the integral transform

g(t, θ) =
∫

x·θ=t

f(x) dm(x), (20)

where {x ∈ Rn : x · θ = t} is a hyperplane for a fixed t ∈ R and θ ∈ Sn−1,
Sn−1 = {x ∈ Rn : ‖x‖ = 1} is a sphere, and dm is the Lebesgue measure.

At the beginning of the last century, the Austrian mathematician J. F. Radon
found the way how to reconstruct the function f from the values g. If n = 3 the
inverse Radon transform has the form

f(x) = − 1

8π2
∆x

∫
S3

g(〈x, θ〉, θ) dS3
θ (21)

and if n = 2 the inverse Radon transform (IRT) is

f(x) =
1

4π2

∫
S2

v.p.

∞∫
−∞

g′t(t, θ)

x · θ − t
dt dS2

θ , (22)

4Note that the Radon transform is closely connected to the Fourier transform. The nD Fourier
transform of f is the composition of the Radon transform of f and 1D Fourier transform.
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where “v.p.” means “within the meaning of the Cauchy principal value”. The Radon
transform (RT) of a function f ∈ L2(R2) is given by the line integral

g(t, ϕ) =
∫

〈x,θ〉=t

f(x) dx, θ = (cosϕ, sinϕ)T . (23)

The inverse Radon transform (IRT) by

f(x) =
1

4π2

2π∫
0

v.p.

∞∫
−∞

g′t(t, ϕ)

x · θ − t
dt dϕ. (24)

The relations (23) and (24) became the theoretical basis of the computer tomo-
graphy with the following basic idea: If a body is irradiated by X-rays or other
type of waves, the intensity of the radiation I changes depending on the density
distribution f of substances through which it passes. When the the initial intensity
of radiation is I0 and l(x, θ) is a line which the ray goes along, this change can be
expressed as

ln
I0
I

=
∫

l(x,θ)

f(x) dx. (25)

It means that the value ln I0
I

is equal to the Radon transform of f. When measure-
ments for different directions of rays are realized, the inverse Radon transform can
be used to determine the density distribution f in the studied plane.

The received results can be demonstrated graphically. The measured values for
each ray are represented by the corresponding gray’s shade. This allows to express
graphically the density of distribution in the planar section. The space image arises
by composition of the images from different planar sections.

Example 6 The Radon transform in R2 of the given picture is done. Its graphical
expression – sinogram – is given in Figure 13. Here, lighter color is assigned to higher
values of the RT.

Figure 12: The original image Figure 13: The sinogram
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In practice, all measurements and evaluation are realized on the tomograph that
consists of a scanner, computer and monitor. A program for the evaluation of the
data provided by scanner is built in the computer. This program is based on a numer-
ical algorithm. There are three basic types of algorithms in computer tomography
that are used for reconstruction – convolution algorithms, algebraic algorithms and
Fourier reconstruction. We focus only on one of the convolution algorithms that is
used in medicine.

The formula (24) for inverse Radon transform is the base for the convolution
reconstruction algorithms in the plane. But the form of algorithm depends on the
design of the scanner (the formulas for parallel-ray geometry and divergent-ray geo-
metry see [5]). Recent tomographic scanners are equipped with the 4th generation
of detectors placed around the circumference of a circle that moves along the source
sending divergent rays.
Denote
D – the distance of the source from the origin of the coordinate system,
L – the distance of the reconstructed point (ρ, ψ) from the source,
β – the angular position of the source,
γ – the angle that gives the location of a ray within a fan,
γ′ – the angle of the ray that passes through the reconstructed point (ρ, ψ) (see
Figure 14).

Figure 14: Measurement of data

The formula for the inverse Radon transform is converted into the form

f(ρ, ψ) =
D

2

2π∫
0

∞∫
−∞

v(L sin(γ′ − γ)) g(β, γ) cos γ dγ dβ. (26)

The derivation can be found in [2].
If the source is rotated p times about the same angle ∆β = 2π

p
and it always

sends 2q rays that form an equal angle ∆γ = π
2q
, the values g(βj, γl) are received.
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Now, the integral in equation (26) can be calculated by the trapezoidal rule

f(ρ, ψ) ∼ D

2
∆β∆γ

p−1∑
j=0

q∑
l=−q

v(L sin(γk − γl))g(βj, γl) cos γl. (27)

The reconstruction of the function f is divided into two phases. First, the convolution
of functions v and g (i.e. the sum inside the formula (27)) is calculated and, second,
the back projection is performed.

5. Conclusion

The Fourier transform and the wavelet transform are used in signal processing,
they allow to extract information from many different kinds of data, they can help
to analyze voice or to compress pictures, they can also serve to analyze variability,
to remove noise or to detect significant moments in the time series that are used in
economy.

Also the tomographic methods have broad application. We can meet them not
only in medical diagnostics, but they are also used in studying structure of materials
(the study of composite materials), in prospecting (mapping oil deposits, the ocean
floor), in pyrometry (temperature in the blast furnace) or in astronomy.
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Abstract

Our aim is to classify and compute zeros of the quadratic two sided matrix polyno-
mials, i.e. quadratic polynomials whose matrix coefficients are located at both sides
of the powers of the matrix variable. We suppose that there are no multiple terms of
the same degree in the polynomial p, i.e., the terms have the form AjX

jBj , where
all quantities X,Aj ,Bj , j = 0, 1, . . . , N, are square matrices of the same size. Both
for classification and computation, the essential tool is the description of the polyno-
mial p by a matrix equation P(X) := A(X)X+B(X), where A(X) is determined by
the coefficients of the given polynomial p and P, X, B are real column vectors. This
representation allows us to classify five types of zero points of the polynomial p in
dependence on the rank of the matrix A. This information can be for example used
for finding all zeros in the same class of equivalence if only one zero in that class is
known. For computation of zeros, we apply Newtons method to P(X) = 0.

1. Introduction

In papers [4, 5] we have investigated quaternionic polynomials of the one-sided
and the two-sided type. The one-sided type is described by terms of the form ajx

j

or xjaj, whereas the two-sided type is described by terms of the form ajx
jbj , j ≥ 0.

In this paper we will consider matrix polynomials which have matrix coefficients
and a matrix variable as well, i.e. the terms have the form AjX

jBj. All quanti-
ties X, Aj, Bj, j = 0, 1, . . . , N, are square matrices of the same size.

We will use the notation R,C for the field of real and complex numbers, respec-
tively; K will stand for R or C. The set of square matrices over K will be denoted
by K

n×n, where n is the order of the matrix. By I ∈ K
n×n we will denote the identity

matrix, the matrix 0 ∈ K
n×n is the zero matrix.

Since the general task is very complicated, in this paper we will restrict ourselves
to quadratic matrix polynomials without multiple terms of the same degree: for
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given A0, A1, A2, B0, B1, B2 ∈ K
n×n, we consider quadratic polynomial p in the

form

p(X) = A0B0 +A1XB1 +A2X
2B2, where A0B0, A2, B2 6= 0 . (1)

The condition A0B0 6= 0 implies that p(0) 6= 0. The conditions A2, B2 6= 0 imply
that the term with the degree 2 is nonvanishing.

If the matrix X has the property p(X) = 0, we will call X a zero of p.
As an example, let us consider matrices of the order n = 2. In this case the

quadratic matrix polynomial can be formally transformed into a linear system of
four equations (for n = 2, it is true for polynomials of any degree N) and we will
classify the zeros of the polynomial in terms of the rank of the corresponding system.

In general, we transform the quadratic matrix polynomial p into a matrix equa-
tion P(X) := A(X)X+B(X), where A(X) is determined by the coefficients of the
given polynomial p and P, X, B are real column vectors. Then we classify zeros by
the rank of the matrix A. We showed that in general there are five different types
of zeros.

For computation of zeros, we apply Newton’s method to the matrix equation
P(X) = 0.

2. Preliminaries

This section contains basic facts from the theory of matrices. It can be found
e. g. in Horn and Johnson, [2].

Let A ∈ K
n×n. Then χA(z) := det(zI − A) = zn + a

(n)
n−1

zn−1 + · · · + a
(n)
0

is
called the characteristic polynomial of A. Cayley–Hamilton theorem says that the
matrix A annihilates its characteristic polynomial,

χA(A) = An + · · ·+ a
(n)
0

I = 0 . (2)

In particular, for n = 2 we have

A2 − tr(A)A+ det(A)I = 0 .

Let us recall that two matrices A, B of the same order over K are similar if there
is a nonsingular matrix H of the same order such that A = HBH−1.

For fixed A ∈ K
n×n the set of matrices

[A] = {B,B = HAH−1 for all nonsingular H} (3)

is called similarity class of A . The similarity class is finite only for multiples of the
identity matrix: if A = cI, c ∈ K, then [A] = {A} consists only of one element.

There are two special cases of (1) worth mentioning. If we put X := zI ∈ K
n×n,

where z ∈ K, we obtain

p(X) = p(zI) = C0 +C1 z +C2 z
2, Cj = AjBj , j = 0, 1, 2 . (4)
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If all coefficients have the special form Aj = αjI ∈ K
n×n, Bj = βjI ∈ K

n×n,
γj := αjβj, j = 0, 1, 2, we obtain

p(X) = γ0I+ γ1X+ γ2X
2 . (5)

Both forms have their ranges in K
n×n, see also [7, 3].

Definition The set of matrices

C := {M : M = aI ∈ K
n×n} (6)

is called the center of Kn×n.

Remark In general terms the center of a noncommutative (semi)group G is the set
of all elements, which commute with all elements of G.

If we want to find out whether an element of the center C is a zero of a given
quadratic matrix polynomial p, then, we have to use the form (4), namely

p(zI) = C0 +C1z +C2z
2 = 0 ∈ K

n×n, Cj = AjBj , j = 0, 1, 2 . (7)

This matrix equation separates into n2 standard polynomial equations: Let Cj :=

(c
(j)
kl ), k, l = 1, 2, . . . , n, j = 0, 1, 2. Then (7) is equivalent to a system of n2 equations

c
(0)

kl + c
(1)

kl z + c
(2)

kl z
2 = 0, k, l = 1, 2, . . . , n . (8)

This allows us to assume, that in the sequel we are looking only for solutions X /∈ C.

Lemma Let p be a quadratic polynomial defined by the coefficients Ai,Bi∈K
n×n,

i = 0, 1, 2, and let q be a quadratic polynomial defined by the coefficients H−1AiH,
H−1BiH, i = 0, 1, 2, for a fixed nonsingular matrix H ∈ K

n×n. Then,

p(X) = 0 ⇐⇒ q(H−1XH) = 0. (9)

Proof For the quadratic polynomial q, we have

q(X) =(H−1A0H)X0(H−1B0H)+

+ (H−1A1H)X1(H−1B1H) + (H−1A2H)X2(H−1B2H) =

=H−1
(

A0(HX0H−1)B0 +A1(HX1H−1)B1 +A2(HXH−1)2B2

)

H =

=H−1p(HXH−1)H,

which implies that q(H−1XH) = H−1p(X)H. Or in other words p(X) is similar to
q(H−1XH) and (9) follows.
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3. Quadratic matrix polynomial of order two

Let us assume that all occurring matrices have the order n = 2.
The following recursion was for the first time used by Horn and Johnson, see [2].

Theorem Let X ∈ K
2×2 and let χX(z) := z2−tr(X)z+det(X) be its characteristic

polynomial. Then, there are numbers αj, βj, j ≥ 0, such that

Xj = αjX+ βjI for all j = 0, 1, . . . , (10)

where
α0 := 0, β0 := 1,

αj+1 := tr(X)αj + βj,

βj+1 := −αj det(X), j ≥ 0.

In particular,
α1 := 1, β1 := 0,

α2 := tr(X), β2 := − det(X).

If the coefficients of the characteristic polynomial are real, then also all αj, βj are
real for all j.

Proof From the Cayley–Hamilton theorem we have

X2 = tr(X)X− det(X)I . (11)

If we multiply (10) byX and replaceX2 with the right-hand side of the equation (11),
we obtain

Xj+1 = αj(tr(X)X− det(X)I) + βjX = (αjtr(X) + βj)X− αjdet(X)I =

= αj+1X+ βj+1I ,

from which the desired recursion in (10) follows. �

The theorem says that a power Xj, j = 0, 1, . . . , of a matrix X of order 2,
regardless of the power j, can always be expressed as a linear combination of the
matrix X and the identity matrix I.

Remark In general, for a matrix X of order n a power Xj can always be expressed
as an element of the linear hull of matrices Xν−1, Xν−2, . . . , I , where ν is the degree
of the minimal polynomial of X, see [2].

Remark The corresponding iteration given by Pogurui and Shapiro in [9] is three
term recursion, whereas (10) is a two term recursion. Formally, they differ. In
some cases, two term recursions are more stable than the corresponding three term
recursions. For an example, see [8].

We apply formula (11). Then our quadratic polynomial p(X) in (1) has the form

p(X) = A1XB1 + tr(A)A2XB2 +A0B0 − det(X)A2B2 . (12)
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Now, let n ≥ 2 and let X ∈ K
n×n , X := (xj,k), j, k = 1, 2, . . . , n. We define the

operator
col : Kn×n → K

n2×1 ,

col(X) :=
(

x11, x21, · · · , xn1, x12, x22, · · · , xn2, · · · , x1n, x2n, · · · , xnn

)T

.

In particular for X ∈ K
2×2,

X =

(

x11 x12

x21 x22

)

, we have col(X) :=
(

x11, x21, x12, x22

)T

.

Let us note that col is an invertible linear mapping, col : Kn×n −→ K
n2

.
Let A,B,X ∈ K

n×n. Let f be a linear mapping, f : Kn×n −→ K
n×n, defined as

f(X) = AXB , (13)

represented by the Kronecker product in the form

col(f(X)) = (BT ⊗A)col(X). (14)

Applying col to (12) and using (14), we obtain, see also [1],

P(X) := col(p(X)) = M(X)col(X) +N(X), (15)

where

M(X) = (BT

1
⊗A1) + tr(X)(BT

2
⊗A2) , (16)

N(X) = col(A0B0 − det(X)A2B2). (17)

Let us remark that both M(X) and N(X) depend on X or more precisely on tr(X)
and det(X). This means, that the matrices M(X) and N(X) are constant on the
equivalence class [X].

Corollary Let P(X) := M(X)col(X)+N(X) = 0. Then all (further) zeros Y of P
in [X] can be determined by solving the linear 4× 4 system

M(X)col(Y) +N(X) = 0. (18)

If the matrix M is nonsingular (we delete the arguments), then there is only one
zero of P in [X]. If the matrix M is the zero matrix, then N = 0 and all matrices
in [X] are zeros of P. If N = 0, then M is singular.

Since the zeros of P are eventually all solutions of the linear system (18), we can
classify them according to the rank of M(X).

Definition Let P(X) := M(X)col(X) +N(X) = 0 and let X 6= aI, a ∈ R. We
say that X is a zero of rank k if rank(M(X)) = k, 0 ≤ k ≤ 4. A zero of rank 0 will be
called spherical zero, a zero of rank 4 will be called isolated zero. If X = aI, a ∈ R ,
the zero will also be called isolated.
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Remark In [5], we have shown that for quaternionic polynomials zeros of all ranks,
zero to four, exist. For the geometrical meaning of the term “spherical zeros” see [10].

As an example, let us have a special quadratic polynomial

p(X) := X2 + α1X+ α0I, α1, α0 ∈ K, α0 6= 0, X ∈ K
2×2, (19)

which according to (12) can also be written as

P(X) = (α1 + tr(X))col(X) + (α0 − det(X))









1
0
0
1









or equivalently p(X) = (α1 + tr(X))X+ (α0 − det(X))I.

Then, there are two cases for all zeros X of p:

1. α1 + tr(X) = α0 − det(X) = 0,

2. α1 + tr(X) 6= 0, α0 − det(X) 6= 0.

All matrices which are not a real multiple of the identity matrix I and obey the
equations of the first case are spherical zeros of the given polynomial, they form an
equivalence class of spherical zeros. And there are no other spherical zeros. Put

X :=

(

x1 x3

x2 x4

)

. (20)

Then all spherical solutions have the form

X :=

(

−α1 − x4 x3

x2 x4

)

,

where x2, x3 are arbitrary and

x4 := −1

2

(

α1 ±
√

α2

1
− 4(α0 + x2x3)

)

.

Let the second case be valid. In this case, there may exist other zeros than spherical
ones, which are of rank four and which must have the form

X = −α0 − det(X)

α1 + tr(X)
I =: aI.

Since det(X) = a2, tr(X) = 2a, we obtain

a :=
1

2

(

−α1 ±
√

α2

1
− 4α0

)

.
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To summarize: Matrix polynomials (19) have always one spherical zero and in addi-
tion two isolated zeros (if α2

1
− 4α0 6= 0) or one isolated zero (if α2

1
− 4α0 = 0). All

in all, p has two or three zeros.

Example Consider the following quadratic polynomial with matrices of order n = 2:

p(X) := X2 −X− I, (21)

i.e.
α1 = −1, α0 = −1, α2

1
− 4α0 = 5 6= 0 . (22)

The matrix polynomial (21) has two isolated zeros

X1 =
1

2

(

1 +
√
5 0

0 1 +
√
5

)

, X2 =
1

2

(

1−
√
5 0

0 1−
√
5

)

and there is also one spherical zero

X3 =

(

1− x4 x3

x2 x4

)

,

where x4 =
1

2
(1±

√
5− 4x2x3) , x2, x3 arbitrary . Let us put, e. g., x2 = x3 = 0. We

obtain

x+

4
=

1

2
(1 +

√
5), x−

4
=

1

2
(1−

√
5) .

Accordingly, for the spherical root X3 we have

X+

3
=

1

2

(

1−
√
5 0

0 1 +
√
5

)

, X−
3
=

1

2

(

1 +
√
5 0

0 1−
√
5

)

.

It is an easy exercise to show that X+

3
and X−

3
belong to the same equivalence class:

PX+

3
P−1 =

1

2

(

0 1
1 0

)(

1−
√
5 0

0 1 +
√
5

)(

0 1
1 0

)

= X−
3
.

Thus the polynomial p of (21) has altogether three zeros, one spherical and two
isolated ones.

Lemma In order that the quadratic polynomial p, defined in (12), has a spherical
zero, it is necessary that

(BT

1
⊗A1) = −tr(X)(BT

2
⊗A2) and A0B0 = −det(X)A2B2 .

Proof It follows directly from the definition of spherical zeros. �

Corollary Let A,B be arbitrary nonvanishing matrices in K
2×2. A necessary

condition for spherical zeros to exist is that p has the form

p(X) := AX2B+ α1AXB+ α0AB, AB 6= 0, (23)

for certain α0, α1.
On the other hand, not for each choice of α0, α1 does this lead to spherical zeros.

Remark Polynomials with order two matrices of any degree could be treated in
a similar way as we did it here.
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4. Numerical considerations for finding the zeros

Let us restrict ourselves to quadratic matrix polynomials with n = 2.
We apply Newton’s method to

P(X) := col(p(X)) = 0 , X = (xjk), j, k = 1, 2 ,

i.e. we solve
P(X) +P′(X)S = 0 , col(X) := col(X) + S , (24)

where the matrix P′ is the corresponding Jacobi matrix. The Jacobi matrix P’ can
be found explicitly in a very simple way by using a technique described in [6], without
employing partial derivatives.

In the following example, the computations were carried out with MATLAB.

Example We will treat a parameter dependent problem defined by

p(X(λ)) := A2X
2B2 +A1XB1 +C(λ), (25)

where

A2 :=

(

1 3
2 4

)

, B2 :=

(

5 10
4 8

)

, (26)

A1 :=

(

9 11
10 12

)

, B1 :=

(

13 15
14 16

)

, (27)

C(λ) := −
(

288 345
324 394 + λ

)

, λ ∈ [−1, 1]. (28)

Note, that A2B2+A1B1 +C(λ) =

(

0 0
0 −λ

)

. If we denote the zeros by X(λ),

we see thatX(0) = I is one of the zeros. The corresponding matricesM, N from (16)
and (17) for the zero I are

M =









127 173 134 178
150 196 156 200
155 225 160 224
190 260 192 256









, N =









−305
−350
−379
−446









; Mcol(I) +N = 0 holds .

In this case rank(M) = 4, i.e. in this case for λ = 0 the matrix I is the isolated zero.
However, there is another zero for λ = 0. For this zero the two matrices are

M =
1

8









931 1129 1004 1220
1030 1228 1112 1328
1070 1290 1144 1384
1180 1400 1264 1504









, N =
1

8









−2151
−2358
−2454
−2684









,
Mcol(I) +N = 0

holds, too.

Here, rank(M) = 3, i.e. I is the zero of rank 3.
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The general solution of Mcol(X)+N = 0 has the form col(X) = αx0+x1 for all
α ∈ R, where

x1 =
1

11









−1
12
11
0









and x0 =









0.52124669131568
−0.52124669131568
−0.47780946703938
0.47780946703938









.
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Abstract

A two-dimensional depth-averaged flow and temperature model was applied to
study the circulation patterns in the Oder (Szczecin) Lagoon located on the border
between Germany and Poland. The system of shallow water and temperature evolu-
tion equations is discretized with the modified Utnes scheme [4], which is characterized
by a semi-decoupling algorithm. The continuity equation is rearranged to Helmholtz
equation form. The upwinding Tabata method [3] is used to approximate convec-
tive terms. Averaged flow fields under prevailing wind conditions in August were
calculated. The temperature variations were also simulated during the flood period
in summer 1997. Simulation results are presented and limitations of the model are
discussed.

1. Introduction

Wind induced flows in water bodies play an important role in dynamics of aquatic
ecosystems. Water temperature, in turn, is one of the important physical parameter
that affects limnological, biological processes. Especially in large shallow systems,
like the lagoon, significant spatial differences in water temperature are possible. As
a result biological and chemical processes may have different intensities in different
regions of the lagoon. An accurate diagnosis and prediction of background physical
processes, like currents and temperature variations is essential for correct under-
standing of aquatic ecosystems functioning. In shallow, well mixed water bodies
a depth-averaged system of the so-called “shallow water” and temperature equations
gives a rather good description of real systems.
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2. Materials and methods

The dynamics of flow and temperature in shallow lakes can be described with
vertically integrated equations of motion, continuity and heat transfer [1], given in
vector form

∂V

∂t
+ (∇ · V )V + f × V = − g∇ζ + k |W |W − gn2 |V | V

H4/3
+ ν∆V, (1)

∂ζ

∂t
+∇ · (HV ) = 0, (2)

∂HT

∂t
+ (∇ · V )HV =div(νTH∇T ) +

α(T − Ta)

ρ0Cp
. (3)

In above, V = (u, v) is a depth-averaged velocity vector, H(x, y, t) = h(x, y) +
ζ(x, y, t) is the total water depth, ζ is the water surface elevation above a horizontal
datum, h is the depth below datum, W = (Wx,Wy) is the wind velocity vector,
f is the Coriolis parameter, g is the acceleration due to gravity, n is the Manning
roughness coefficient, k is the wind resistance coefficient, ν is the horizontal eddy
viscosity, ρ0 = 103 kgm−3 is water density, Cp = 4.18710−3 J kg−1 ◦C−1 is a specific
heat capacity of water, T is water temperature (◦C), Ta is air temperature (◦C), α is
the bulk heat exchange coefficient (W m−2 ◦C−1). It is estimated using an empirical
dependence on wind speed W , (ms−1), see [1]:

α = 5.7 + 3.8W. (4)

The boundary conditions of system (1)–(2) are as follows (cf. [1]):

land boundary: V |B1
= 0, (5)

liquid boundary: ζ |B2
= ζ |B(t). (6)

When ν = 0 the governing equations (1)–(2) constitute a system of quasi-linear
hyperbolic partial differential equations. In this case the non-slip boundary condi-
tion (5) is replaced with the slip one

V · n|B1
= 0, (7)

where n is the unit vector normal to the boundary of the solution domain. Zero
initial conditions

V = ζ |t=0 = 0 (8)

are frequently used in practical applications to start the time integration.
For temperature equation (3) the no-flux boundary condition was applied along

the solid boundary. The observations of time-varying inflowing water temperature
in the river Oder altogether with estimated values of inflowing mean cross-section
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velocity (T. Neumann, pers. com.) and time-series of wind in the Pomeranian Bight
were used to drive the combined flow and temperature model.

Using a time-splitting algorithm [4] the momentum equation (1) is discretized as
follows:

V ∗ − V m

τ
+ (∇ · V m)V ∗ + f × V m = k

∣

∣Wm+1
∣

∣Wm+1 − gn2 |V m|V ∗

H4/3
+ ν△V ∗, (9)

V m+1 − V ∗

τ
= − g∇ζm+1. (10)

When the time derivative is approximated with the forward difference the conti-
nuity equation takes the form:

ζm+1 = ζm − τ∇ ·HV m+1. (11)

Multiplying equation (10) byH , taking the divergence and substituting it in place
of ∇·HV m+1 into (11), the Helmholtz approximation of the semi-implicit continuity
equation is obtained

[1− τ 2g∇ ·H∇]ζm+1 = ζm − τ∇ ·HV ∗. (12)

The calculations are organized in the following way: an intermediate velocity V ∗

is calculated by (9), the water level elevation ζm+1 is predicted by (12) and the
corrected velocity V m+1 is obtained from (10).

The space domain Ω is divided into a sum of linear triangular elements. Unknown
variables are approximated as series of basis functions

V ≈
N
∑

j=1

Vj · ϕj , ζ ≈
N
∑

j=1

ζj · ϕj, T ≈
N
∑

j=1

Tj · ϕj, (13)

where N is the number of mesh nodes and ϕj are the global basis functions. After
substituting the decompositions (13) to (3), (9), (10), and (12), multiplying according
to the Galerkin method by the weight-functions ϕT

i , integrating over Ω and apply-
ing the Gauss theorem for the second-order terms, the system of linear algebraic
equations is derived

(M + τ(CONV +D + gn2F ))V ∗ =M(V m − τ(f × V m − k
∣

∣Wm+1
∣

∣Wm+1))

+ τ

∫

B

ϕiν
∂V

∂n
dB, (14)

(M + gτ 2K)ζm+1 =Mζm − τG(HV )∗ + gτ 2
∫

B

ϕiH
∂ζ

∂n
dB, (15)

MV m+1 =MV m − τgGζm+1, (16)

(M + τ(CONV +D∗))HTm+1 =MHTm + τ
α

ρCp
M(T − Ta)

m, (17)
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where the global matrices are compiled as follows:

M =

∫

Ω

ϕi · ϕT
j dΩ, D =

∫

Ω

ν∇ϕ · ϕT
j dΩ, D∗ =

∫

Ω

νT∇ϕi · ∇ϕT
j dΩ, (18)

F =

∫

Ω

ϕi · ϕT
j · |V

m|
H4/3

dΩ, G =

∫

Ω

∇ϕi · ϕT
j dΩ, K =

∫

Ω

∇ϕi ·H∇ϕT
j dΩ. (19)

The CONV denotes the global convective matrix, modified according to the up-
winding Tabata scheme [3]. The systems of linear equations (14)–(17) are solved
sequentially using a direct Gaussian elimination method [1].

3. Numerical results

In the first step a linear triangular mesh of 2240 nodes and 3845 elements covering
the Oder lagoon was generated (Fig. 1) and linked to depth information. This grid
density with a slightly simplified bathymetry was chosen to keep the computation
time reasonable. During the Oder flood in summer 1997, the total simulation period
of 20 days with simulation time steps of 5 minutes was used for flow field calculations.
The Manning roughness coefficient of 0.015m−1/3s, the horizontal diffusion coefficient
equal to 0.01m2s−1, and the Coriolis parameter of 1.174 · 10−4 s−1 were applied.

Figure 1: Bathymetric map and triangular mesh of the Oder Lagoon.

180



Figure 2: Wind direction and wind speed in the Pomeranian Bight during the Oder
flood in July and August 1997.

In steady-state simulations a constant and spatial uniform wind field as well as
constant water discharge was used. Wind data was available from an automatic
recording station in the Oder Bight (Fig. 2) and for several periods from the centre
of the lagoon, too. Wind speed from Oder Bight was adapted to the situation in
the lagoon by multiplication with the empirical derived factor of 0.46 (Spiegel pers.
com). According to Mohrholz and Lass [2] the discharge from the lagoon into the
Baltic Sea varied depending on the prevailing wind direction (13–19% Peene Strait,
8–14% Dziwina Strait, 73% Swina Strait) but was kept constant with time. Intrusion
of seawater was neglected.

Depending on the general atmospheric situation wind from east and west is dom-
inating during late summer. The flow field for these two typical wind situations were
simulated assuming a river discharge into the lagoon of about 300m3s−1 (Fig. 3).
Under common late summer discharge situations the flow field is to a significant
amount determined by wind conditions. In general, the simulated flow velocities are
low and water masses need about 50 days to pass the lagoon and to enter the western
bay (Kleines Haff). The flow in the deep channel, crossing the lagoon, shows some
special behaviour, with reduced flow velocities. The water transport through the
eastern and western shallower regions is significant faster. In the central parts of the
Kleines Haff the flow velocities are low. But close to both shores a coastal jet with
increased flow and transport speed occurs. Under these conditions the shores are to
a higher degree affected by Oder water than other areas of the bay.
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Figure 3: Average two-dimensional flow field under typical August weather condi-
tions. An average Oder discharge into the lagoon of 300m3s−1 and a mean wind
of 3ms−1 from west was applied. The trajectories of passive particles moving with
currents are shown 25 and 120 days after release in different locations.

Despite these coastal jets water needs 70 days to pass this bay and 120 days to
pass the whole lagoon from river mouth to the Peene strait. This slow transport and
water exchange allow independent local ecological dynamic, like algal bloom in the
bay. Under similar water discharge but west wind conditions a quite different flow
pattern prevails (Fig. 3). The simulations show a relatively fast transport of 26 days
across the lagoon via the deep channel. All shallower parts on the right- and left-hand
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Figure 4: The Oder Lagoon between August 1 and August 20, 1997. a) Measured
air temperature and simulated water temperature, b) Simulated water temperatures
in different areas of the lagoon.

side show much lower current speeds. In several areas in the Kleines Haff as well
as in the eastern part pronounced large eddies occur and limit the water exchange
(Fig. 3c). Interpreting the figures, one has to keep in mind that the simulations yield
depth-averaged flow velocities, that constant wind and discharge were applied and
seawater intrusions were disregarded. These simplifications limit general statements.

Results of dynamic simulation under the time varying meteorological conditions
show that the temperature regime of the Oder lagoon is strongly influenced by air
temperature fluctuations. The dependence of the bulk heat transfer coefficient on
wind speed (4) additionally accelerates the response of depth-averaged water tem-
perature to changes in atmospheric conditions. This is clearly reflected in Fig. 4b
showing simulated time-series of water temperature in different parts of the lagoon.
Shallow near coastal areas exhibit higher and faster changes than deeper parts lo-
cated in the vicinity of the navigational channel. During night the spatial tempera-
ture differences in the lagoon are significant lower than during day. In August 1997,

183



for example the spatial temperature difference exceeded 2◦C during the day and
was below 1◦C in the night. Due to the flood, the flow velocity in the lagoon was
much higher compared to other years and spatial water exchange increased. Under
common summer conditions we can expect significant higher spatial temperature
differences.
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Institute of Mathematics ASCR,Prague2013

FUZZY SETS AND SMALL SYSTEMS
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Abstract

Independently with [7] a corresponding fuzzy approach has been developed in [3–5]
with applications in measure theory. One of the results the Egoroff theorem has been
proved in an abstract form. In [1] a necessary and sufficient condition for holding the
Egoroff theorem was presented in the case of a space with a monotone measure. By
the help of [2] and [6] we prove a variant of the Egoroff theorem stated in [4].

1. Introduction

In [7] the notion of a fuzzy subset A of a space X has been defined as a mapping
A : X → [0, 1]. Especially, if A : X → {0, 1}, then A can be identified with a classical
set B ⊂ X by the help of the equality A = χB.

Almost at the same time the notion of a set of small measure has been character-
ized in [3–5] using a sequence (Nn)

∞
n=1

of subfamilies of a σ-algebra S ⊂ 2X satisfying
the following properties:

(i) ∅ ∈ Nn,Nn+1 ⊂ Nn for every n ∈ N,

(ii) if A ∈ Nn, B ∈ S and B ⊂ A, then B ∈ Nn,

(iii) if A,B,C ∈ Nn, then A ∪ B ∪ C ∈ Nn−1,

(iv) if Ai ⊃ Ai+1 (i = 1, 2, · · ·) and
⋂

i

Ai = ∅, then to every n ∈ N there is i such

that Ai ∈ Nn.

The classical Egoroff theorem states that if a sequence (fn)n of real measurable
functions converges to a measurable function f almost everywhere, then it converges
almost uniformly, i.e. ∀ε > 0 ∃A ∈ A such that µ(A) < ε and (fn)n converges
uniformly to f on X − A.

Definition. We say that a sequence (fn)n converges to f almost everywhere,
if {x ∈ X ; fn(x) does not converge to f(x)} ∈ Nn for every n. We say that (fn)n
converges to f almost uniformly, if for any n ∈ N there exists A ∈ Nn such that (fn)
converges uniformly to f on X −A.
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2. Egoroff theorem

Theorem. Let (Nn)n be a small system of subfamilies of a measurable space
(X,S). Let (fn)n converges to f almost everywhere. Then (fn)n converges to f
almost uniformly.

Proof. First we use a result from [6]: If (Nn)n satisfies (i)–(iv), then there exists
a monotone continuous function µ : S → [0, 1] such that

Nn = {A ∈ S;µ(A) < 3−n},

n = 1, 2, 3, . . . In [1] the following theorem has been proved: A monotone function
µ : S → [0, 1] satisfies the Egoroff theorem if and only if it satisfies the following
condition (E):

For every double sequence
{

E
(m)

n

}

of measurable sets which satisfies

E(m)

n ց E(m) (n → ∞) , µ

(

∞
⋃

m=1

E(m)

)

= 0

there exist increasing sequences {ni}∞i=1
and {mi}∞i=1

of natural numbers such that

lim
k→∞

µ

(

∞
⋃

i=k

E(mi)

ni

)

= 0.

We are going to prove that the monotone continuous set function µ satisfies

condition (E). Let
{

E
(m)

n

}

is double sequence of measurable sets for which

E(m)

n ց E(m) (n → ∞) , µ

(

∞
⋃

m=1

E(m)

)

= 0.

From the monotonicity it follows that

0 = µ(∅) ≤ µ
(

E(m0)
)

≤ µ

(

∞
⋃

m=1

E(m)

)

= 0.

We have proven that µ
(

E(m)
)

= 0 for arbitrary m. From this it follows that there is
a natural number n1 for which

µ
(

E(1)

n1

)

≤ 1

3
.

Similarly there is a number n2 > n1 for which

µ
(

E(2)

n2

)

≤ 1

32
,
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etc. Putting mi = i, we get

µ

(

∞
⋃

i=k

E(mi)

ni

)

≤
∞
∑

i=k

1

3i
=

1

3k

1− 1

3

=
1

2 · 3k−1
.

From this it follows that

lim
k→∞

µ

(

∞
⋃

i=k

E(mi)

ni

)

= 0.

3. Conclusion

We presented a new proof of the Egoroff theorem for small systems [4]. It follows
from a representation theorem in [6] and the Egoroff theorem for monotone measures
in [2].
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Abstract

This paper deals with a Riemann solution for scalar hyperbolic equations with
discontinuous coefficients. In many numerical schemes of Godunov type in fluid dy-
namics , electromagnetic and so on, usually hyperbolic problems are solved to estimate
fluxes. The exact solution is generally difficult to obtain, but good approximations are
provided in many situations like Roe and HLLC Riemann solvers in fluid. However
all these solvers assumes that the acoustic waves speeds are continuous which is not
true as we will show in this paper. A new Riemann solver is then proposed based on
previous work of the author and an application to a gas-particle model for a 90 degree
curved bend is performed.

1. Introduction

In many numerical methods such as the dual-mesh finite volume, DG meth-
ods, estimation of convective numerical fluxes at the (dual) interfaces is required.
The accuracy of the method depends on the accuracy of the flux estimation. The
most popular methods consists of using a Riemann approximation solver, because
of its physical meaning. This approach was proposed first by Godunov [3] and then
many Riemann solver approximations where developed. The most popular being
Roe solver [8, 9] where the Jacobian matrix is averaged in such way that hyper-
bolicity, consistency with the exact Jacobian and conservation across discontinuities
are fulfilled. For fluid application this solver has been modified [1, 2] to overcome
the shortcoming for low-density flows. HLL Riemann solver [4] proposed to solve
for the original flux, the major drawback of this solver due to the space averaging
process, is that contact discontinuities, shear waves and material interfaces are not
captured. To remedy to this problem, the HLLC solver [10] was proposed, by adding
the missing wave to the structure. However, all these methods assume that the
waves speeds are continuous through the interfaces (intercellular in the case of finite
volume dual mesh) by applying diverse averaging process. This is not true in reality;
typical situations are recirculation for turbulent flows and transitions from subsonic
to supersonic for transonic regimes. To remedy to this situation and as a first step
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a Riemann solver of scalar hyperbolic linear equation with discontinuous coefficient
is developed, this is based on a first idea developed in [7]. This solver takes into
account the discontinuities of waves speeds and shows physical behaviours that are
missed by the existing solvers. Numerical proof of the proposed solution is provided
and an application to a gas-particle model with a validation against experimental
results for a 900 curved bend described in [5] is performed.

2. Riemann solution for hyperbolic equation with discontinuous coeffi-
cient

Consider the following scalar linear hyperbolic equation with discontinuous coef-
ficient,

∂
∂t
ϕ+ β(x) ∂

∂x
ϕ = 0 on Ω× [0, T ] ,

ϕ(0, x) = ϕ0 =

{
ϕL if x < 0 ,
ϕR if x > 0 ,

β(x) =

{
βL if x < 0 ,
βR if x > 0 ,

(1)

In this equation, the acoustic wave speed β is discontinuous which is not taken into
account in the existing Riemann solvers, where acoustic waves speeds are assumed
to be continuous in the vicinity of the origin. To build a solution let us first analyze
the following different situations.

Case 1: βL > 0 and βR > 0 we have propagation of the discontinuity (of initial
condition) to the right and we do not need to consider what happening within the
fan defined by the two acoustic waves, because they will catch up if βL > βR and if
βL < βR an expansion will appear.

Case 2: βL < 0 and βR < 0 similar the previous case with a propagation of the
discontinuity to the left.

Case 3: βL < 0 and βR > 0 we have propagation of the discontinuity to the left and
the right simultaneously, and we need to determine what happened within the fan
defined by the two acoustics waves. We assume that a constant state appears and
its expression will be given below.

Case 4: βL > 0 and βR < 0 in this case we have opposite acoustic wave speeds and
then the discontinuity will remain blocked, which means there is no propagation.

Based on the above analysis, the Riemann solution of problem (4) is given by

ϕ(x, t) =


ϕL if βL > 0 and βR > 0,
λ if βL < 0 and βR > 0,

ϕR if βL < 0 and βR < 0,
ϕ0 if βL > 0 and βR < 0,

(2)

where the expression of the constant λ is given by

λ =
1
βL
ϕL+

1
βR

ϕR
1
βL

+ 1
βR

(3)
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(a) (b)

(c) (d)

Figure 1: Initial condition and Riemann solution after 100 time itera-
tions: a) Case 1, b) Case 2, c) Case 3, d) Case 4.

To prove solution (2) and formula (3) at least numerically, the Riemann prob-
lem (1) is solved using a centred finite volume scheme stabilized with a first order arti-
ficial viscosity, which is equivalent in this case to a finite difference scheme. Several
initial conditions ϕ0 and acoustic wave β values are tested. All tests confirm the
proposed solution, two examples are shown in Figures 1 and 3. We can see in
particular the solutions corresponding to cases 3 and 4, it is clear that they could
not be obtained if the coefficient β is averaged as in the existing Riemann solvers.
Figures 2 and 4 show the perfect agreement of the proposed analytical expression
of λ with the predicted numerical value.

3. Application to gas-particle model discretization

In this section the proposed Riemann solver is applied to discretize part of gas-
particle model that describes a motion of particles under the effect fluid drag forces.
A 90 degree bend is then simulated and results are compared to experimental data.
First let us recall equations governing three-dimensional unsteady viscous compress-
ible flow coupled with a particle motion equation in Eulerian modelisation:
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Figure 2: Initial condition and Riemann solution corresponding to Case 3 and the
analytical value of λ.

(a) (b)

(c) (d)

Figure 3: Initial condition and Riemann solution corresponding to Case 3 and the
analytical value of λ.
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Figure 4: (a) Riemann Solution: a) Initial condition, b) Solution after 100 time
iterations.

Fluid phase:

∂

∂t
(φgρg) +∇(φgρgUg) = 0 on Ω× [0, T ] , (4)

∂

∂t
(φgρgUg) +∇(φgρgUg ⊗ Ug) = −∇Pg +∇τg − dfac

1

τp
φg(Ug − Up) (5)

on Ω× [0, T ] .

Gas phase:

∂

∂t
(φpρp) +∇(φpρpUp) = 0 on Ω× [0, T ] (6)

∂

∂t
(φpρpUp) +∇(φpρpUp ⊗ Up) = −φp

ρp
∇Pg + dfac

1

τp
φp(Ug − Up) (7)

+φp(1−
ρg
ρp

) on Ω× [0, T ] ,

where φg and φp are the gas and particle volume fraction satisfying the conservation

condition φg+φp = 1, dfac =

{
1 + 0.15R0.687

e0
if Re0 < 1000

0 else
is the drag coefficient,

Re0 = Dp|Up−Ug |
νg

is the particle Reynolds number, τp =
ρpD2

p

18µg
is the particle response

time and −→g is the gravity.

In this model only Drag and gravity forces are considered in the particle-gas
interaction.
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3.1. Numerical discretization

A finite volume method is used to discretize the overall gas-particle model. In the
solid phase, the particle fraction volume variable vanishes, where the sand is absent
which results in dividing by zero when computing the velocity vector in equation (7).
This leads obviously to a severe instability of the scheme. To avoid this situation
the non-conservative form of the momentum equation is considered, while the con-
servative form of the volume fraction is kept. The momentum equation takes the
form:

∂

∂t
(Up) +∇(Up ⊗ Up) = − 1

ρp
∇Pg + dfac

1

τp
(Ug − Up) + (1− ρg

ρp
) (8)

on Ω× [0, T ].

The inviscid fluxes of the fluid phase are estimated using a second order HLLC
Riemann solver and the limiter developed in [6]. For the solid phase a centered
scheme is used for the non-conservative momentum equations of the solid phase, and
it is stabilized by adding a first order artificial viscosity of the form

4Qi =
∑
J∈NI

λIJ (QJ −QI) . (9)

With λIJ = 1
1+tan(θIJ )2

, and θIJ is the angle between the normal to the surface ηI
and the velocity vector UI . This allows diffusion to act mostly in the flow direction
while minimizing the cross wind effects similar to streamline diffusion methods.

To estimate the volume fraction flux in the solid phase, we need to solve a Rie-
mann problem of a hyperbolic equation with discontinuous coefficient of the type
∂
∂t

(φp) + qIJ
∂
∂s

(φp) = 0, where qIJ = U I
p ηIJ and U I

p is the particle velocity at node I
and ηIJ is the normal to the surface separating dual cells associated with nodes I
and J . To take into account of such discontinuities, the proposed Riemann solver is
used.

3.2. Validation

The numerical model is validated against experimental results of a 90◦ bend test
case described in [5]. This test case was selected first because of the availability of
experimental data and then for the wide use of curved ducts in industrial applications
such as air-coal flows in coal combustion equipments, coal liquefaction-gasification
pipe systems, gas-particle flows in turbo machinery, and contaminant particle flows
in ventilation ducts. The apparatus and geometry of the test are shown on figure 5
scanned from reference [5]. The 90◦ duct has a square cross-section of D = 0.1 m and
upstream and downstream duct lengths are 1 m and 1.2 m, respectively. Glass spher-
ical particles with a material density of 2990 kg/m3 and diameter size of 50 kg/m3 are
used. The inlet fluid and particles velocity is set to 52.19 m/s, for more details see
[5]. For the numerical simulation a hybrid mesh is used as shown in Figure 6. The
mesh contains 766614 tetrachordal elements and 1229952 prisms forming 12 bound-
ary layers. The computational domain starts 10D upstream from the bend entrance
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(a) (b)

Figure 5: Experimental apparatus: (a) General flow system, (b) Geometry of the
curved square duct.

Figure 6: Hybrid used mesh and volume fraction profile for the curved duct.

and extends up to 12D downstream from the bend exit. The classical viscous flow
boundary condition are imposed for the the fluid phase while a rebounding particle-
wall conditions with normal and tangential restitution coefficients of 0.9 and 0.8
respectively, are considered for the solid phase. Finally, the turbulence features are
captured using the Spalart-Allmaras turbulent model.

3.3. Results

Figure 6 shows the used mesh and the particles volume fraction profile. Figure 7
shows the residual convergence to the steady state. Figure 8 shows a good agreement
of the fluid and particles mean stream velocity with experimental results for the
different sections shown in 5-(b). This demonstrates the validity and the accuracy of
the physical and numerical model.

4. Conclusions

The paper presented a new Riemann solver for scalar hyperbolic equations with
discontinuous coefficient. A numerical proof of physical phenomena predicted by
the proposed solver and missed by all existing Riemann solvers is provided. Appli-
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Figure 7: Bend case: Residual convergence.

(Station θ =0) (Station θ =15)

(Station θ =30) (Station θ =45)

Figure 8: 90 Bend case: Mean Stream fluid and particles velocity comparison to
experimental results for different stations.

cation of the solver in a gas-particle model discretization is achieved and applied
to a 90 curved bend with comparison to experimental data. This work is a first
step toward a construction of a Riemann solver for systems with discontinuous co-
efficients and its application for inviscid fluxes estimation in the Navier-Stokes and
electromagnetic equations discretization.
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Institute of Mathematics ASCR,Prague2013

ON MATHEMATICAL MODELLING OF GUST RESPONSE

USING THE FINITE ELEMENT METHOD
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Abstract

In this paper the numerical approximation of aeroelastic response to sudden gust
is presented. The fully coupled formulation of two dimensional incompressible viscous
fluid flow over a flexibly supported structure is used. The flow is modelled with the
system of Navier-Stokes equations written in Arbitrary Lagrangian-Eulerian form and
coupled with system of ordinary differential equations describing the airfoil vibrations
with two degrees of freedom. The Navier-Stokes equations are spatially discretized by
the fully stabilized finite element method. The numerical results are shown.

1. Introduction

The gust-response analysis is important in the aircraft wing design, typically the
wing have to withstand a gust of certain intensity and profile. As the aeroelastic ef-
fects can have significant influence on the gust loads, the aeroelastic analysis of gust
response is important, cf. [1]. Modern methods for dynamic gust analysis typically
rely on panel-method aerodynamics, where the frequency domain formulations are
being used. In this paper the dynamic gust-response analysis is performed with the
aid of the developed finite element code, and particularly the gust response of a flex-
ibly supported very light airfoil was numerically analyzed. The mathematical model
consists of fluid flow described by the two-dimensional Navier-Stokes equations and
the continuity equation coupled with the equations describing the airfoil motion. The
incompressible flow is approximated by the finite element method (FEM). The couple
of finite element velocity/pressure spaces satisfies the Babuška-Breezi condition, see
e.g. [6]. The dominating convection is stabilized by the residual based stabilization,
cf. [5]. The numerical solution is sought on adaptively refined meshes, cf. [4]. The
motion of the computational domain is treated by the Arbitrary Lagrangian-Eulerian
(ALE) method, cf. ([8, 7]).
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Figure 1: A sketch of the computational domain and its boundary (left). The elastic
support of the airfoil on translational and rotational springs (right).

2. Mathematical model

Fluid flow. The flow in the two-dimensional computational domain Ωt is described
by the incompressible Navier-Stokes equations written in ALE form

DAu

Dt
+ (u−wD) · ∇u+∇p− ν△u = 0 in Ωt, (1)

∇ · u = 0 in Ωt,

where DA

Dt
denotes the ALE derivative, wD denotes the ALE domain velocity, u =

(u1, u2)
T is the velocity vector, p is the kinematic pressure, and ν is the kine-

matic viscosity. The symbol At denotes a regular one-to-one Arbitrary Lagrangian-
Eulerian (ALE) mapping of the reference configuration Ω0 onto the current configu-
ration Ωt for any time instant t ∈ I. The boundary ∂Ωt consists of mutually disjoint
parts shown in Fig. 1, where ΓD is the inlet part, ΓO is the outlet boundary, and ΓWt

is the moving surface of the airfoil, ∂Ωt = ΓD∪ΓO∪ΓWt. The system of equations (1)
is completed with boundary conditions

a) u(x, t) = uD +Vg(t) for x ∈ ΓD, t ∈ I,

b) u(x, t) = wD(x, t) for x ∈ ΓWt, t ∈ I, (2)

c) −ν ∂u
∂n

+ (p− pref)n = 0 on ΓO,

where uD = (U∞, 0) is the far field velocity, Vg(t) is the vertical gust velocity, pref is
a reference mean value of pressure at the outlet part of boundary, and by an initial
condition

u(x, 0) = u0(x), x ∈ Ω0. (3)

Structural model. The fluid flow is coupled with the motion of a flexibly sup-
ported airfoil, which can be vertically displaced and rotated. Fig. 1 shows the elastic
support of the airfoil on translational and rotational springs. The pressure and vis-
cous forces acting on the vibrating airfoil immersed in flow result in the lift force L(t)
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and the torsional moment M(t). The governing equations are written in the form
(see [10])

mḧ + Sα α̈ + khhh = −L(t),
(4)

Sαḧ + Iαα̈ + kααα = M(t),

where khh and kαα are the bending stiffness and torsional stiffness, respectively, m is
the mass of the airfoil, Sα is the static moment around the elastic axis EA and Iα is
the inertia moment around EA.

Coupling conditions. The aerodynamic lift force L acting in the vertical direction
and the torsional moment M are defined by

L = − l
∫

ΓWt

2
∑

j=1

τ2jnjdS, M = − l
∫

ΓWt

2
∑

i,j=1

τijnjr
ort
i dS, (5)

where l is the depth of the considered airfoil section, and τij are the components of
the stress tensor defined by

τij = ρ

[

−pδij + ν

(

∂ui

∂xj
+

∂uj

∂xi

)]

, (6)

rort1 = −(x2 − xEA2), rort2 = x1 − xEA1.

In Eq. (6) by δij the Kronecker symbol is denoted, n = (n1, n2) is the unit outer
normal vector to ∂Ωt on ΓWt (pointing into the airfoil) and xEA = (xEA1, xEA2) is
the position of the elastic axis. Relations (5) and (6) define the coupling of the fluid
model with the structural model.

3. Finite element approximation

The straightforward application of FEM procedures is often not possible for the
incompressible Navier-Stokes equations particularly due to the advection-diffusion
character of the equations with the dominating advection, for which a case the
Galerkin FEM leads to unphysical solutions if the grid is not fine enough in re-
gions of strong gradients. In order to obtain physically admissible correct solutions
it is necessary to apply suitable mesh refinement (e.g. anisotropically refined mesh,
cf. [4]) combined with a stabilization technique, cf. [2, 9]. In this work, the FEM
is stabilized with the aid of streamline upwind/pressure stabilizing Petrov-Galerkin
(SUPG/PSPG) method (so called fully stabilized scheme, cf. [5]) modified for the
application on moving domains (cf. [10]). In order to discretize the problem (1),
we define the equidistant division of the time interval [0, T ] with the time step ∆t,
denote tn = n∆t, and approximate the time derivative by second order backward
difference formula:

DAu

Dt
(x, t) ≈ 3un+1 − 4̂un + ̂un−1

2∆t
,
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where un+1 is the approximation of the flow velocity at time tn+1 defined on the com-

putational domain Ωn+1, and ̂uk is the transformation of the flow velocity at time tk

defined on Ωk transformed onto Ωn+1. Further, equation (1) is formulated weakly
and the solution is sought on the couple of finite element spaces W∆ ⊂ H1(Ωn+1) and
Q∆ ⊂ L2(Ωn+1) for approximation of velocity components and pressure, respectively.
Further, by X∆ ⊂ W∆ the subspace of the test functions is denoted. Let us men-
tion that the finite element spaces should satisfy the Babuška–Brezzi (BB) condition
(see e.g. [6]). In practical computations we assume that the domain Ω = Ωn+1 is
a polygonal approximation of the region occupied by the fluid at time tn+1 and the
finite element spaces are defined over a triangulation T∆ of the domain Ωt as piece-
wise polynomial functions. In our computations, the well-known Taylor-Hood P2/P1

conforming finite element spaces are used for the velocity/pressure approximation.
The stabilized discrete problem at a time instant t = tn+1 reads: Find U =

(u, p) ∈ W∆ × Q∆, p := pn+1, u := un+1, such that u satisfies approximately the
Dirichlet boundary conditions (2 a-b) and

a(U ;U, V ) + L(U ;U, V ) + P(U, V ) = f(V ) + F(U ;V ) (7)

holds for all V = (z, q) ∈ X∆ × Q∆. Here, the Galerkin terms are defined for any
U = (u, p), V = (z, q), U∗ = (u∗, p∗) by

a(U∗;U, V ) =
3

2∆t
(u, z)Ω+

1

Re
(∇u,∇z)Ω + (w · ∇u, z)Ω − (p,∇ · z)Ω+(∇ · u, q)Ω,

f(u, z) =
1

2∆t
(4ûn − ûn−1, z)Ω,

where w = u∗−wn+1
D , and the scalar product in L2(Ω) is denoted by (·, ·)Ω . Further,

the SUPG/PSPG stabilization terms are used in order to obtain stable solution also
for large values of Reynolds numbers,

L(U∗;U, V ) =
∑

K∈T∆

δK

(

3u

2τ
− 1

Re
△u+ (w · ∇)u+∇p, (w · ∇)v +∇q

)

K
,

F(U∗;V ) =
∑

K∈T∆

δK

(

4̂un − ̂un−1

2τ
, (w · ∇)v +∇q

)

K

,

where w = v∗ − wn+1, and (·, ·)K denotes the scalar product in L2(K). The term
P(U, V ) is the additional grad-div stabilization defined by

P(U, V ) =
∑

K∈T∆

τK(∇ · u,∇ · z)K .

Here, the choice of the parameters δK ≈ h2
K and τK ≈ 1 is carried out according

to [5] or [9] on the basis of the local element length hK .
Furthermore, the nonlinear stabilized weak formulation of Navier-Stokes sys-

tem (7) is solved with the aid of Oseen linearization. The arising large system
of linear equations is solved by a direct solver as UMFPACK (cf. [3]).
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Figure 2: Aeroelastic response and its spectra for the far field velocity U∞ = 5m/s
(top), U∞ = 10m/s (middle) and U∞ = 15m/s (bottom).

The equations describing the motion of the flexibly supported airfoil are dis-
cretized in time by second order backward difference formula and the coupled fluid-
structure model is solved using the partitioned strongly coupled algorithm. This
means that per every time step the fluid flow and the structure motion are approx-
imated repeatedly in order to converge to a solution which satisfies all interface
conditions. In order to overcome the instability due to the coupling procedure, an
underrelaxation is applied for the structural part of the problem.

4. Numerical results

The presented numerical method is applied for approximation of aeroelastic be-
haviour of a typical section, which is an idealized representation of a wing.

The structural parameters were chosen according to [1]. The aircraft wing struc-
tural arrangement is uniformly made of balsa wood (density ρ = 150 kg/m3, Young
modulus E = 1.3×109 Pa, shear modulus G = 6.2×108 Pa). The airfoil shape is given
by the Karman-Trefftz conformal transformation, for details see [1]. The mass and
inertial properties of the considered airfoil were m = 2×10−4 kg and I = 10−7 kg m2.
Thus Iα = 1.2 × 10−7 kg m2, Sα = 2 × 10−6 kg m. The stiffness coefficients of the
springs were kh = 25.4N/m, kα = 0.272Nm/rad. The airfoil chord was c = 0.1m
and the depth of the section was l = 0.03m. The air density was ρ = 1.225 kgm−3

and the air kinematic viscosity was ν = 1.453× 10−5m2/s.
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Figure 3: Aeroelastic response for the far field velocity U∞ = 30m/s (top), U∞ =
50m/s (middle) and U∞ = 60m/s (bottom).

A vertical wind gust acts as the aerodynamic perturbation to the static equilib-
rium of the aeroelastic system and is introduced as a variation of the free-stream
velocity prescribed on the inlet part of the boundary. A sinusoidal vertical gust of
one-second duration is considered. The reference free stream velocity was chosen
U∞ = 15m/s and the gust intensity VG = 1.5m/s for the light gust and VG = 5m/s
for the heavy gust case was considered.

The aeroelastic response of the considered airfoil computed for constant far field
velocities and the initial conditions α(0)=3◦, h(0)=0m, ḣ(0)=0m/s, α̇(0)=0◦s−1

are shown in Figs. 2 and 3. The spectra of the numerically simulated signals show
the lower resonance frequency at about 36Hz for predominantly vertical vibrations
and at about 191Hz for rotation of the airfoil. The damping of the system increases
with higher flow velocities. The system is damped by aerodynamic forces and is
stable for all the considered values of far field velocities up to U∞ = 60m/s.
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Figure 4: The numerical results for light gust. The aeroelastic response of the typical
airfoil section for far field velocity U∞ = 15m/s and gust velocity VG = 1.5m/s (top).
The detail of the response during the first 0.1 s (bottom).

The gust aeroelastic responses computed for the cases of either a light
(VG = 1.5m/s) or a heavy gust (VG = 5m/s) are shown in Figs. 4 and 5. For the
case shown in Fig. 5 the flow velocity patterns are shown in Fig. 6, where a very
strong vorticity above the vibrating profile was developed after the airfoil loading by
the heavy gust.

5. Discussion and conclusion

The gust response of a typical airfoil section has been investigated with the aid
of a developed numerical scheme. The numerical method was described and the
numerical results of a benchmark problem were presented.

The aeroelastic gust responses exhibit stronger oscillations than it was found by
Berci et al. [1]. The maximum of the airfoil rotation amplitude for a light gust
resulting from our computation (α ≈ 0.8◦) was found nearly three time higher than
the maximum rotation (α ≈ 0.27◦) computed in [1], however, a maximum of a mean
value for rotation (α ≈ 0.3◦) is in a good agreement with the results by Berci et al.
Similarly, the maximum value of the computed vertical displacement h ≈ 10mm ap-
proximately correspond to a maximum h ≈ 8mm found in [1]. A dominant oscillation
frequency corresponds to the airfoil rotation.

Similar conclusions result from the computation of the airfoil response to a heavy
gust. The maximum values for the horizontal displacement of about h ≈ 30mm
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Figure 5: The numerical results for heavy gust. The aeroelastic response of the
typical airfoil section for far field velocity U∞ = 15m/s and gust velocity VG = 5m/s
(top). The detail of the response during the first 0.1 s (bottom).

computed by us correspond well to the maximum value h ≈ 27mm obtained in [1].
The maxima of mean values computed for rotation (α ≈ 1◦) are in a good agreement
in both studies, however, the maximum value for rotation computed in our case
(α ≈ 4◦) is evidently higher than the maximum α ≈ 2.5◦ found in [1].

The reason for the found differences between the two approaches of the numerical
simulation can be mainly in the flow model. Berci et al. [1] considered Reynolds
Average Navier Stokes equations (RANS) including a turbulence model for the flow
and we considered the laminar flow, when the flow separation on the airfoil surface
is becoming earlier and creation of the vortices is more frequent than in the case of
turbulent boundary layer.
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Figure 6: The flow pattern at the equidistant time instants Tk = k∆T marked in Fig. 5,
∆T = 2× 10−4 s.
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Abstract

In this note, we introduce a new approach to study overlapping domain decompo-
sition methods for optimal control systems governed by partial differential equations.
The model considered in our paper is systems governed by wave equations. Our
technique could be used for several other equations as well.

1. Introduction

The research about using domain decomposition methods to resolve optimal
control problems started with the pioneering work of A. Bensoussan, R. Glowin-
ski and P. L. Lions [8] in the 70’s and B. Depres and J.D. Benamou in the early
90’s [2, 1, 7, 6, 5, 4, 4, 3]. Since then, this research line has become very active with
several works of J. E. Lagnese and G. Leugering [13, 11, 10, 9, 12]. However, most of
the works on domain decomposition methods for optimal control of systems governed
by partial differential equations are devoted to nonoverlapping algorithms, though
overlapping algorithms are proved to be more stable and much faster [14]. One of
the reasons is that there was no convergence proof of the overlapping algorithms. In
the series of papers [17, 16, 18, 15], we develop a new technique to study the con-
vergence of overlapping algorithms. The technique is proved to be applicable for the
convergence study of domain decomposition algorithms for several kinds of partial
differential equations. Within the frame of developing our new technique for differ-
ent convergence problems, this note is devoted to the application of the technique
to study an overlapping domain decomposition for optimal control systems governed
by wave equations, which was studied in [1] but only for the nonoverlapping case.
Our technique has the potential of being a new tool to extend many of the previous
studies from nonoverlapping to overlapping algorithms. For the sake of simplicity, we
only consider a decomposition with two subdomains, however, our technique could
be extended to the multisubdomains case without any difficulty.
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2. Model description and definition of the domain decomposition algo-

rithm

Let Ω be a smooth bounded domain in R
N . Similarly as in [1], we consider the

following wave equation defined on (0, T )× Ω















∂tty(t, x)−∆y(t, x) = f(t, x) + v(t, x) on (0, T )× Ω,

y(0, x) = y0(x); ∂ty(0, x) = y1(x) on Ω,

y(t, x) = g(t, x) on (0, T )× ∂Ω,

(1)

where y0, y1 ∈ L2(Ω), g ∈ L2((0, T )× ∂Ω).

Let U be a convex subset of L2((0, T )× Ω) and define the function

J(v, y) =
1

2

∫

(0,T )×Ω

(γ|y(x)|2 + α|v(t, x)|2)dxdt, (2)

where α and γ are positive constants.

We consider the following optimization problem

min
v∈U

J(v, y(v)). (3)

Following [1], we need to solve



























∂ttp (t, x)−∆p(t, x) = y(t, x) on (0, T )× Ω,

p (T, x) = 0; ∂tp(T, x) = 0 on Ω,

p (t, x) = 0 on (0, T )× ∂Ω,
∫

(0,T )×Ω
(p+ αv)(w − v)dxdt ≥ 0 ∀w ∈ U.

(4)

We now design an overlapping domain decomposition method to resolve the sys-
tem (1) and (4). Divide the domain Ω into two overlapping subdomains Ω1 and Ω2

in the following sense

Ω = Ω1 ∪ Ω2,

(∂Ω1\∂Ω) ∩ (∂Ω2\∂Ω) = ∅.
The overlapping domain decomposition algorithm with Robin transmission condition
now reads for i ∈ {1, 2}















∂tty
n+1
i −∆yn+1

i = f(t, x) + vn+1
i (t, x) on (0, T )× Ωi,

yn+1
i (0, x) = y0(x), ∂ty

n+1
i (0, x) = y1(x) on Ωi,

yn+1
i (t, x) = g(t, x) on (0, T )× ∂Ωi,
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













∂ttp
n+1
i −∆pn+1

i = γyni (t, x) on (0, T )× Ωi,

pn+1
i (T, x) = 0, ∂tp

n+1
i (T, x) = 0 on Ωi,

pn+1
i (t, x) = 0 on (0, T )× ∂Ωi,

∫

(0,T )×Ωi

(pn+1
i + αvn+1

i )(wi − vn+1
i )dxdt ≥ 0,

with the transmission condition on ∂Ωi\∂Ω

∂νiy
n+1
i + rip

n+1
i = ∂νiy

n
3−i + rip

n
3−i,

∂νip
n+1
i + riy

n+1
i = ∂νip

n
3−i + riy

n
3−i,

where νi is the outward normal outward unit normal vector of Ωi on the boundary
∂Ωi\∂Ω and ri is a positive constant. At step 0, we choose an initial guess (y0i , p

0
i )

in C2([0, T ] × Ω). We can see that the algorithm is well-posed and (yni , p
n
i , v

n
i ) ∈

L2(0, T,H2(Ωi))× L2(0, T,H2(Ωi))× L2(0, T,H2(Ωi)).

3. Convergence of the algorithm

For i ∈ {1, 2} we define

ỹn+1
i = yn+1

i − y,

p̃n+1
i = pn+1

i − p,

ṽn+1
i = vn+1

i − v,

and get the following systems















∂ttỹ
n+1
i −∆ỹn+1

i = ṽn+1
i (t, x) on (0, T )× Ωi,

ỹn+1
i (0, x) = 0, ∂tỹ

n+1
i (0, x) = 0 on Ωi,

ỹn+1
i (t, x) = 0 on (0, T )× ∂Ωi,















∂ttp̃
n+1
i −∆p̃n+1

i = γỹni (t, x) on (0, T )× Ωi,

p̃n+1
i (T, x) = 0, ∂tp̃

n+1
i (T, x) = 0 on Ωi,

p̃n+1
i (t, x) = 0 on (0, T )× ∂Ωi,

with the transmission condition on ∂Ωi\∂Ω

∂νi ỹ
n+1
i + rip̃

n+1
i = ∂νi ỹ

n
3−i + rip̃

n
3−i,

∂νi p̃
n+1
i + riỹ

n+1
i = ∂νi p̃

n
3−i + riỹ

n
3−i.
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We suppose that for any n ∈ N, ṽni is extended by 0 in (T,∞) and still denote by
ỹn+1
i the solution of















∂ttỹ
n+1
i −∆ỹn+1

i = ṽn+1
i (t, x) on (0,∞)× Ωi,

ỹn+1
i (0, x) = 0, ∂tỹ

n+1
i (0, x) = 0 on Ωi,

ỹn+1
i (t, x) = 0 on (0,∞)× ∂Ωi.

Using the change of variable t → T − t, we still denote by p̃n+1
i the solution of















∂ttp̃
n+1
i −∆p̃n+1

i = γỹni (T − t, x) on (0,∞)× Ωi,

p̃ni (0, x) = 0, ∂tp̃
n+1
i (0, x) = 0 on Ωi,

p̃n+1
i (t, x) = 0 on (0,∞)× ∂Ωi,

with the assumption that ỹni (T − t, x) = 0 for t > T . Let H be a positive constant
to be chosen later. Define

ȳni =

(
∫ ∞

0

|ỹni | exp
(

−
√
Ht
)

dt

)

gni ; p̄ni =

(
∫ ∞

0

|p̃ni | exp
(

−
√
Ht
)

dt

)

gni ,

with gni ∈ C2(RN ,R), gni > 0 to be chosen later. For F : Ω → R, we define the
following norm

|‖F‖| =
[

∫

supp(F )

∣

∣

∣

∣

∫ ∞

0

|F | exp
(

−
√
Ht
)

dt

∣

∣

∣

∣

2

dx

]1/2

.

Similarly as in [15], a simple calculation leads to

−∆ȳn+1
i +Hȳn+1

i +

(

−
N
∑

α=1

∂αg
n+1
i

gn+1
i

+
∇gn+1

i

gn+1
i

)

ȳn+1
i +

N
∑

α=1

2∂xα
gn+1
i

gi
∂xα

ȳn+1
i (5)

=

∫ T

0

vn+1
i sign (ỹn+1

i ) exp
(

−
√
Ht
)

dt on Ωi,

−∆p̄n+1
i +Hp̄n+1

i +

(

−2
N
∑

α=1

∂xα
gn+1
i

gn+1
i

+
∇gn+1

i

gn+1
i

)

p̄n+1
i +

N
∑

α=1

2
∂xα

gn+1
i

gni
∂xα

p̄ni (6)

= γ

∫ T

0

yni (T − t) sign (p̃n+1
i ) exp

(

−
√
Ht
)

dt on Ωi.
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Choosing gni such that ∇gni −rig
n
i = 0 on ∂Ωi\Ω , the transmission condition become

∂νi ȳ
n+1
i = ∂νi

(
∫ ∞

0

|ỹni | exp
(

−
√
Ht
)

dtgni

)

=

[
∫ ∞

0

(∂νi |ỹni |+ ri|ỹni |) exp
(

−
√
Ht
)

dt

]

gni

+

∫ ∞

0

|ỹni | exp
(

−
√
Ht
)

dt(∂νi − ri)g
n
i

=
1

βi
∂νi ȳ

n+1
i on ∂Ωi\∂Ω,

by choosing gni and gn3−i, we can make βi to be a very large positive constant. Simi-
larly, we also have

βi∂νi p̄
n+1
i = ∂νi p̄

n
3−i.

Let ϕn
3−i be a function in H1(Ω\Ωi) and ϕn+1

i be a function in H1(Ωi) such that
ϕn+1
i = ϕn

3−i on ∂Ωi\∂Ω and use them as test functions for (5) and (6)

∫

Ω\Ωi

∇ȳn3−i∇ϕn
3−idx+

∫

Ω\Ωi

N
∑

α=1

2
∂xα

g3−i

g3−i
∂xα

ȳn3−iϕ3−idx

+

∫

Ω\Ωi

(

∆g3−i

g3−i

− 2
N
∑

α=1

∂xα
g3−i

g3−i

)

ȳn3−iϕ
n
3−idx+

∫

Ω\Ωi

Hȳn3−iϕ
n
3−idx

−
∫

Ω\Ωi

∫ T

0

vn3−isign (ỹ
n
3−i) exp

(

−
√
Ht
)

dtϕn
3−idx

= − βi

{

∫

Ωi

∇ȳn+1
i ∇ϕn+1

i dx+

∫

Ωi

N
∑

α=1

2
∂xα

gn+1
i

gn+1
i

∂xα
ȳn+1
i ϕn+1

i dx (7)

+

∫

Ωi

(

∆gn+1
i

gn+1
i

− 2

N
∑

α=1

∂xα
gn+1
i

gn+1
i

)

ȳn+1
i ϕn+1

i dx+

∫

Ω̄i

Hȳn+1
i ϕn+1

i dx

−
∫

Ωi

∫ T

0

vn+1
i sign (ỹn+1

i ) exp
(

−
√
Ht
)

dtϕn+1
i dx

}

.

In the above equation choose ϕn+1
i to be ȳn+1

i . Then there exists a function ρ such
that ρ is defined on Ω\Ωi and

‖ρ‖H1(Ω\Ωi) ≤ C1‖ȳn+1
i ‖H1(Ωi),

‖ρ‖L2(Ω\Ωi) ≤ C1‖ȳn+1
i ‖L2(Ωi),
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where C1 is a positive constant depending on Ω, Ω1, and Ω2. Choose ϕn
3−i to be ρ,

then for H large enough, (7) implies

2
∑

i=1

C2

{

1

2

∫

Ω\Ωi

|∇ȳn3−i|2dx+
H

2

∫

Ω\Ωi

|ȳn3−i|2dx

−
∫

Ω\Ωi

∫ T

0

vn3−isign (ỹ
n
3−i) exp

(

−
√
Ht
)

dtȳn3−idx

}

≥
2
∑

i=1

βi

{

1

2

∫

Ωi

|∇ȳn+1
i |2dx+

H

2

∫

Ωi

|ȳn+1
i |2dx (8)

−
∫

Ωi

∫ T

0

vn+1
i sign (ỹn+1

i ) exp
(

−
√
Ht
)

dtȳn+1
i dx

}

,

where C2 is some constants depending only on the structure of the equation. In
a similar way, we have

2
∑

i=1

C3

{

1

2

∫

Ω\Ωi

|∇p̄n3−i|2dx+
H

2

∫

Ω\Ωi

|p̄n3−i|2dx

− γ

∫

Ω\Ωi

∫ T

0

yn−1
3−i sign (p̃

n
3−i) exp

(

−
√
Ht
)

dtp̄n3−idx

}

≥
2
∑

i=1

βi

{

1

2

∫

Ωi

|∇p̄n+1
i |2dx+

H

2

∫

Ωi

|p̄n+1
i |2dx

− γ

∫

Ωi

∫ T

0

yni sign (p̃
n+1
i ) exp

(

−
√
Ht
)

dtφn+1
i dx

}

,

where φn+1
i plays a similar role as the role of φn+1

i in the estimate of ȳn+1
i

‖φn+1
i ‖H1(Ω\Ωi) ≤ C1‖p̄n+1

i ‖H1(Ωi),

‖φn+1
i ‖L2(Ω\Ωi) ≤ C1‖p̄n+1

i ‖L2(Ωi).

Similarly as [15], taking βi and H to be very large, and using the equation (as in [1])
∫

(0,T )×Ωi

(pn+1
i + αvn+1

i )(wi − vn+1
i ) dxdt ≥ 0,

we get
lim
n→∞

(|‖∇yni ‖|+ |‖yni ‖|+ |‖∇pni ‖|+ |‖pni ‖|) = 0.

Notice that the fact |‖∇yni ‖|, |‖yni ‖|, |‖∇pni ‖|, |‖pni ‖|, |‖vni ‖| are well-defined is
also included in the convergence result.
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Theorem 3.1 The algorithm converges in the following sense:

lim
n→∞

(|‖∇yni ‖|+ |‖yni ‖|+ |‖∇pni ‖|+ |‖pni ‖|+ |‖vni ‖|) = 0.
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Abstract

The mathematical analysis of a heat equation and its solutions is a standard part
of most textbook of applied mathematics and computational mechanics. However,
serious problems from engineering practice do not respect formal simplifications of
such analysis, namely at high temperatures, for phase-change materials, etc. This
paper, motivated by the material design and testing of a high-temperature thermal
accumulator, as a substantial part of the Czech-Swedish project of an original equip-
ment for exploiting solar energy using optical fibres, demonstrates the possibility of
both direct and inverse analysis, physically transparent and mathematically correct,
paying attention to the set of basic temperature-variable characteristics of thermal
transfer.

1. Introduction

Most textbooks, both from applied mathematics and computational mechanics,
present a heat transfer equation as a slightly modified Poisson equation, supplied
by standard Dirichlet or Neumann boundary conditions, with a few constant ma-
terial characteristics. Consequently, some general analytic results, as [2], p. 184, or
at least semi-analytic ones, making use of the Fourier method by [2], p. 219, can be
derived. Applying the variational approach, the existence and uniqueness of solution
of a linear equation can be verified using the Lax-Milgram theorem together with
some basic facts from the variational calculus; moreover, for the convergence of se-
quences of approximate solutions, the proper error analysis both for space and time
discretization, applying various approaches by [17], is available. However, it is not
easy to find such ideal closed simple systems in the nature. All engineering appli-
cations, especially in the design of advanced materials, structures and technologies
(where sufficiently long experience with their behaviour is missing) work with materi-
als of complicated micro-structure, including potential phase changes. Their effective
material characteristics cannot be evaluated in a simple way and may not exist at
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all in any reasonable sense, at least in that using some standard (e.g. two-scale)
periodic homogenization, as discussed in [5], p. 204, or its generalization (including
non-periodic phenomena and stochastic analysis) by [8]. Even in the homogeneous
and isotropic case, at least from the macroscopic point of view, the determination of
material parameters, making use of incomplete data from available experiments, can
generate non-trivial inverse problems, not covered by [11], p. 255. To compensate
the usual lack of input data, the formulation of such identification problems should
avoid all multi-physical considerations, as the hygro-thermo-chemo-mechanical ones
in [21] (and in a lot of papers referenced there), based on the complete set of con-
servation laws of continuum thermomechanics by [3], p. 4, i. e. for mass, (linear and
angular) momentum and energy (or enthalpy), related to particular material compo-
nents, including their phase changes. Even in the case of reflective insulation layers
with air gaps or layers, reviewed in [12] and [9], most authors try to avoid (as much
as possible) any methods of computational fluid dynamics, to obtain some simpli-
fied formulae for energy conservation only. However, the need of knowledge of results
from various research areas justifies the extensive list of references even in this paper.

Figure 1: Experiments with the exploitations of solar energy (Hudiksvall, Sweden).

The principal motivation for the deeper analysis of heat transfer phenomena,
sketched in this paper, comes from the Czech-Swedish project of the advanced ex-
ploitation of solar energy using optical fibres (cf. Acknowledgements). The left-hand
part of Fig. 1 illustrates the development of the needed technological equipment,
whereas its right-hand part shows one model (a representative from several alterna-
tives) of the heat accumulator, whose effective functionality at high temperatures
(up to 1000 ◦C) is a crucial part of the whole system; more information (without
technical details) can be found in [18]. Fig. 2 shows a hot-wire measurement for the
identification of material characteristics under standard laboratory conditions at the
Faculty of Civil Engineering of Brno University of Technology. This method is open
to its upgrade to high temperatures (more expensive components for a measurement
device are necessary); another active cooperation exists with PD-Refractories CZ
(former Moravian Fire and Schistous Clay Works) in Velké Opatovice. Nevertheless,
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Figure 2: A simple equipment for the non-stationary hot-wire measurements (Brno
University of Technology, Czech Republic).

the computational approach of [1], related to this method (much better than valid
European technical standards), based on the simplifying physical and geometrical as-
sumptions and on the properties of Bessel functions, needs substantial improvements
just in the case of high temperatures.

To demonstrate a (nearly) realistic computational problem without complicated
notations and technical difficulties, we shall consider, apart from its material micro-
structure, a homogeneous and isotropic material, whose thermal behaviour can be
studied using the energy balance in the solid phase by [3], p. 7, without any changes
in geometrical configuration, in the 3-dimensional Euclidean space R3 and at the
time interval I = 〈0, τ〉 for some positive τ . Usually such material is surrounded
by other layers from the measurement system, whose properties should be a priori
known, as explained in [20]; here we shall consider only a separate material specimen,
located in some open set Ω in R3, with all boundary conditions prescribed on the
boundary ∂Ω of Ω in R3. The heat conduction in the specimen will be conditioned by
the heat convection and radiation from its environment. We shall study i) how the
temperature-dependent material characteristics can be inserted both to the direct
calculations of the time development of unknown temperature fields for a priori
known values of such characteristics, solving standard initial and boundary value
problems, ii) how these characteristics can be evaluated in the case of overdetermined
boundary conditions.

2. Direct problems

Let us consider some system of Cartesian coordinates x = (x1, x2, x3) in R3 and
the time variable t ∈ I; upper dot symbols will be reserved for the derivatives with
respect to t, prime symbols for the ordinary derivatives of functions of one real
variable, ∇ for (∂/∂x1, ∂/∂x2, ∂/∂x3) and · for scalar products of vectors from R3.
The most frequently used heat transfer equation in the literature is

c(θ)θ̇ −∇ · (κ(θ)∇θ) + f = 0 on Ω× I, (1)

where θ(x, t) [K] is the unknown temperature, κ(θ) [W/(m·K)] the heat conductivity
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(crucial for the thermal insulation ability of a material) c(θ) [J/m3·K] the heat ca-
pacity (important for the thermal accumulation property) and f [W/m3] the volume
heat source. The thermal diffusivity α(θ) := κ(θ)/c(θ) [m2/s] occurs frequently, too.

The obvious initial condition is

θ(., 0) = θ0 on Ω ; (2)

θ0 has to be prescribed. The boundary ∂Ω is supposed to contain a set Γ, where (in
general nonlinear) boundary conditions of the type

κ(θ)∇θ · ν + ϕ(θ, θe)(|θ|n−1θ − θne ) + g = 0 on Γ× I (3)

are satisfied; here g [W/m2] is the surface heat source, ν := (ν1, ν2, ν3) denotes the
unit normal vector to Γ (with the outside orientation), θe means the temperature
of the environment and ϕ(θ, θe) [W/(m2·Kn)]refers to some boundary characteristic,
related to a real n ≥ 1 (mostly integer in technical applications), namely to that for
interface convection by [6], p. 37, with n = 1, or that for interface radiation by [6],
p. 116, with n = 4, well-known as the Stefan-Boltzmann law; the natural and simple
generalization is to combine a finite number of additive terms of such type on the
left-hand side of (3). Here we can see that even in the case of constant c we cannot
substitute, like (1), κ by α totally, because it cannot be removed from (3) except the
case of (practically) empty Γ. We shall also assume that

θ = θe on Θ× I, (4)

where Θ is some part of the boundary ∂Ω; in this section we shall consider disjoint Θ
and Γ, whose closure covers the whole boundary ∂Ω.

Nevertheless, following [3], p. 8, for the energy balance the most important quan-
tity is the internal energy ε(x, t) [W/kg]; thus we have

(ρ(ε)ε)̇−∇ · (σ(ε)∇ε) + f = 0 on Ω× I, (5)

where ρ(ε) is the material density [kg/m3] and σ(ε) [kg/m] is the new material
characteristic, expected to be replaced using κ(θ) from (3); from the point of view of
practical measurements the values of θ can be obtained much easier than those of ε.
Frequently ρ(ε)ε̇ occurs instead of the first additive term in (5), referring to the mass
conservation; however, some applications, e. g. [16], studying the early-age behaviour
of concrete mixtures, require variable ρ due to the change of material structure, thus
we are only allowed to define ρ(ε) := ρ(ε) +ρ′(ε)ε and write ρ(ε)ε̇ instead of the first
additive term in (5). Dividing (5) by ρ(ε), assumed to be non-zero, we receive

ε̇−∇ · (a(ε)∇ε) + b(ε)∇ε · ∇ε+ f(ε) = 0 on Ω× I, (6)

with a(ε) := σ(ε)/ρ(ε) [m2], b(ε) := −σ(ε)ρ′(ε)/ρ2(ε) [m2] and f(ε) := f/ρ(ε)
[W/kg].

Let us now introduce the following simplified notation: let ψ̂(.) be an arbitrary
real function with its derivative identical with some given real function ψ(.) (defined
up to an additive constant). Using such notation, we are able to set ε = ĉm(θ),
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where cm(θ) [J/(kg·K)] denotes the heat capacity related to the unit mass (unlike
c related to the unit volume); consequently θ = ĉ−1

m (ε). Thus we obtain σ(ε)∇ε =
σ(ĉm(θ))∇(ĉm(θ)) = σ(ĉm(θ))cm(θ)∇θ = κ(θ)∇θ, which implies σ(ε) = κ(θ)/ρ(ε).
Similarly (ρ(ε)ε)̇ = ρ(ε)ε̇ = ρ(ε)cm(θ)θ̇ = c(θ)θ̇ gives c(θ) = ρ(ε)cm(θ). Conse-
quently we are able to evaluate the thermal diffusivity from the (not very simple)
formula α(θ) = κ(θ)/(cm(θ)ρ(ĉm(θ))). Another important information is that for
positive values of κ and ρ and negative values of ρ′ (which is the physically realistic
setting) both factors a and b in (6) remain positive.

The initial and boundary conditions, as a simple analogy to (2), (3), and (4), are

ε(., 0) = ε(θ0) on Ω , (7)

σ(ε)∇ε · ν + ϕ(c−1
m (ε), θe)(|c−1

m (ε)|n−1c−1
m (ε)− θne ) + g = 0 on Γ× I , (8)

ε(θ) = ε(θe) on Θ× I . (9)

To find the solution, i. e. the space- and time- variable temperature field ε (and
consequently to express θ, too), of (6) with the initial conditions (7) and the boundary
conditions (8) and (9) in a reasonable sense, admitting its numerical analysis, in some
appropriate space of mappings from I to Lebesgue and Sobolev spaces defined on Ω
and ∂Ω is not easy because of the presence of various type of nonlinearities in (5)
and (9). Some interesting ideas and partial existence and uniqueness results can
be found in [14], referring to the former analysis of [7]. However, the set of formal
simplifying assumptions hidden there does not enable to handle realistic engineering
problems, as needed in this paper.

Seemingly it could be useful to formulate a similar problem to the just discussed
one for θ directly, without any transformation using ε. Indeed, dividing (1) by c(θ)
(whose values are positive usually), we receive

θ̇ −∇ · (a∗(θ)(κ(θ)∇θ)) + b∗(θ)∇ · ∇θ + f∗(θ) = 0 on Ω× I (10)

with a∗(θ) := κ(θ)/c(θ), b∗(θ) := −κ(θ)c′(θ)/c2(θ), and f∗(θ) := f/c(θ), thus we
should find the solution of (10) with the boundary conditions (3) and (4) and the
initial condition (2). The arguments on the positive values of a∗ and b∗ (instead of
those related to a and b) can be repeated, but at least (10) is even more complicated
than (6) and difficulties similar to those in [14] can be expected.

Some difficulties of the above mentioned type can be removed using the Kirchhoff
transformation u = ĉ(θ) [W/m3], seemingly the slight modification of the discussed
ε = ĉm(θ); consequently θ = c−1(u). Now we have u̇ = ρ(ε)ε̇ and, introducing
β(u) := κ̂(c−1(u)), also ∇β(u) = β′(u)∇u. Then (1) can be converted to the form

u̇−∇ · ∇β(u) + f = 0 on Ω× I (11)

and supplied by the initial and boundary conditions

u(., 0) = u0 on Ω, (12)

∇β(u) · ν + ψe(u)(|γ(u)|n−1γ(u)− θne ) + g = 0 on Γ× I , (13)

u = ue on Θ× I, (14)

with u0 := u(θ0), ue := u(θe), γ(u) := κ̂−1(u) and ψe(u) := ϕ(κ−1(u), θe).
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For the sake of simplicity, let us now assume that Ω is a domain in R3 with
a sufficiently smooth boundary to satisfy theorems on the Sobolev and Lebesgue
spaces introduced on Ω and ∂Ω, namely the Sobolev (compact) imbedding, the
Poincaré-Friedrichs and the trace theorems by [15], p. 17; much more general geomet-
rical configurations (bringing unpleasant technical difficulties) are discussed in [13],
pp. 62, 222, and 385. Moreoever, let β′, γ and ψe be continuous real functions and Θ
be an empty set (this last assumption will be removed soon). One can see that, even
for n = 1 in (13), the classical theory of monotone operators by [10], p. 243, is not
applicable, because the monotonicity is violated for any non-constant β′ or γ, thus
more general results on pseudomonotone or weakly continuous operators are needed.
Applying the standard notation of Sobolev, Lebesgue and Bochner spaces, let us
choose V = W 1,2(Ω) with its dual space V ∗ and consider u0 ∈ V , f ∈ L2(I, L6/5(Ω))
and g, θne ∈ L2(I, L4/3(Γ)). In all following considerations, δ will be some posi-
tive constant (a priori known, small in practice). Let us suppose that β′(r) ≥ δ,
1/δ ≥ γ(r) ≥ δ and 1/δ ≥ ψe(r) ≥ δ for any r ∈ R. Then by [15], p. 237 (after
rather long verification of abstract assumptions), thanks to the properties of quasi-
linear pseudomonotone mappings, the problem formulated by (11), (12) and (13) has
a weak solution u ∈ W 1,2,2(I, V, V ∗) in the sense

u̇(t)v(t) +
∫

Ω
β′(u(x, t))∇u(x, t) · ∇v(x) dx

+
∫

Γ
ψe(u(x, t))(|γ(u(x, t))|n−1γ(u(x, t))− θne (x, t))v(x) ds(x) (15)

=
∫

Ω
f(x, t)v(x) dx−

∫
Ω
g(x, t)v(x) ds(x)

for all v ∈ V and almost every t ∈ I

if β′(r) ≤ 1/δ for any r ∈ R and n = 1. Moreover, by [15], p. 241, thanks to the
properties of quasilinear weakly continuous mappings, the same problem has a very
weak solution u ∈ L2(I, V ) in the sense∫

Ω
(u(x, τ)v(x, τ)− u0(x)v(x, 0)) dx

+
∫
I

∫
Ω
β′(u(x, t))∇(u(x, t)) · ∇(v(x, t)) dx dt

+
∫
I

∫
Γ
ψe(u(x, t))(|γ(u(x, t))|n−1γ(u(x, t))− θne (x, t))v(x, t) ds(x) dt (16)

=
∫
I

∫
Ω
f(x, t)v(x, t) dx dt−

∫
I

∫
Ω
g(x, t)v(x, t) ds(x) dt

for all v ∈ W 1,∞,∞(I,W 1,∞(Ω), L6/5(Ω))

if β′(r) ≤ (1 + |r|5/3−δ)/δ for any r ∈ R and n ≤ 2.
We can see that the very weak solution, unlike the weak one, admits e. g. the

linear growth of β′(r), which is useful in practice. However, the requirement n ≤ 2 is
not realistic, namely in the analysis of radiation effects. The remedy is to choose V
as the space of all v from W 1,2(Ω), whose traces belong to Ln(Γ); the properties
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of such spaces are discussed in [15], pp. 64 and 253. Another needed generalization
is to remove the assumption Γ = ∂Ω. This can be done using the transformation
ũ = u − u∗, where some u∗ from the same space, as required for u, satisfies (14)
instead of u. Consequently we have only ũ(., 0) = u0 − u∗(., 0) on Ω instead of (12),
in addition to (11) and (13) in their slightly modified forms containing ũ; then it is
sufficient to take the subspace of all functions from V with zero values on Θ instead
of V . However, the practical construction of u∗ may not be easy.

Since the derivation of solutions (15) and (16) is based on the Rothe sequences
and Galerkin approximations, the numerical construction of sequences of approx-
imate solutions is available, although the verification of their convergence is not
trivial because of the presence of non-linear terms in (15) and (16). However, in any
algorithm of discretization in time, based on the Euler implicit, Crank-Nicholson
or similar schemes, it is natural to take arguments of β′(.), γ(.), ψe(.) and |.| from
the preceding time step, thus we obtain only linear systems; the proper conver-
gence analysis then relies on various compactness theorems. Let us also notice that
some our assumptions can be weakened, e. g. it is possible to work with arbitrary
f ∈ L1(Ω× I); however, the derivation of relevant results, using accretive mappings
and nonlinear semigroups, by [15], p. 291, does not seem friendly to the construction
of simple computational algorithms.

3. Inverse problems

Due to the limited extent of this paper, we shall refer to the notations and
considerations of the previous section as much as possible. The first step in the
inverse analysis then admits the intersection Γ ∪ Θ with non-zero measure on ∂Ω,
compensating the imperfect knowledge of β′, γ and ψe. It is then useful to introduce
Ξ := Θ \ Γ and Ψ := Γ \Θ (in direct problems clearly Ξ = Θ and Ψ = Γ). Let P be
a set of admissible parameters; its simplest choice can be a closed set in RN with an
integer number N of unknown parameters. Now we can consider β′(r, p), γ(r, p) and
ψe(r, p) as functions of (r, p) ∈ R × P , instead as functions defined on R only. We
shall suppose that all these functions satisfy assumptions of (15) or (16), taking into
account their above sketched generalizations, too, for arbitrary p ∈ P .

Following [4], pp. 123 and 368, it is natural to define

F (p) =
∫
I

∫
Ξ
|u(x, t, p)− ue(x, t)|ω ds(x) dt, (17)

where 1≤ω≤∞ (the well-known choice is the classical least-squares one, i. e. ω=2);
Θ× I in (14) must be reduced to Ξ× I in all direct problems (with fixed p). Mini-
mizing F , which can be interpreted as an error in our overdetermined problem where
u(., ., p) ≈ ue(., .) on Ξ × I, is required in some reasonable sense (the equality here
is not realistic because of the inexact measurements of ue and other input data, our
physical and geometrical simplifying assumptions, disturbing effects from other phys-
ical processes, etc.). Let us notice that F is only a function of N real variables here,
with respect to p. The setting of p enables us to identify all material characteristics
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completely (although the corresponding algebraic manipulations may not be quite
easy).

Another access is seemingly available, too: to define

G(p) =
∫
I

∫
Ξ
|∇β(u(x, t, p) · ν(x) + ψe(u(x, t, p))(|γ(u(x, t, p))|n−1γ(u(x, t, p))

− θne (x, t)) + g(x, t)|ω ds(x) dt (18)

similarly to (17); Γ × I in (13) must be reduced to Ψ × I in all direct problems.
Minimizing G, also interpretable as an error of the (exactly zero) term |.| in (18),
analogous to that of F , but formulated (from the physical point of view) for the
interface heat fluxes instead of the interface temperature, is possible, but rarely
used in practice because i) the evaluation of G (and its derivatives) in (18) is much
more difficult that that of F in (17) and ii) the reliability of recorded values of g is
usually much lower than that of θe in most engineering applications, including that
mentioned in Introduction.

Let us pay attention to (17) only. Let us assume that P is a closed bounded set
in RN , thus (because N is finite) it must be compact. To verify the existence of some
minimum of (17), by [10], p. 191, it is then sufficient to prove its continuity. However,
it is not quite simple, even in the case (15) and ω = 2, although it seems to be easy
i) to consider a sequence of pk ∈ P with k ∈ {1, 2, . . .} with the limit p ∈ P , ii) to
derive a corresponding uk(., ., pk) by (15) to pk, as well as u(., ., p) to p, iii) to insert
v(.) = uk(., ., pk)− u(., .p) into (15) with pk and into (15) with p and calculate their
diference, iv) to integrate the result over I to try to get estimates of uk(., ., pk) −
u(., ., p) in appropriate norms following [10], p. 264. The lack of monotonicity, crucial
for iv), has to be overcome by more advanced tricks, inspired by the sequence of
exercises from [15], p. 66.

The sketched approach gives us only one rough information on the uncertainty
of identified characteristics: the minimal value of F . The further step of the inverse
analysis, motivated by [22], then should be to interpret P as a sample space of
elementary events, supplied by the minimal σ-algebra and by certain probability
measure P . Then, instead of (17), we should minimize

Φ(p) =
∫
P

∫
I

∫
Ξ
|u(x, t, p)− ue(x, t)|ω ds(x) dt dP , (19)

with respect to all other modified conditions, improved by P . Some preparatory
results of such type for a linearized heat transfer problem, including much more
references, remarks to direct, sensitivity and adjoint problems and to the convergence
analysis of nonlinear conjugate gradient algorithms, generalizing the Newton-type
ones, applicable to (17) (although the exact values of derivatives cannot be computed
easily), to minimize Φ, have been presented in [19]. Unfortunately, the general
case contains still open problems because of the absence of such lemmas, as the
(generalized) Aubin-Lions one by [15], p. 194, crucial for the compactness results in
the deterministic case, and corresponding interpolation ones; this makes it difficult
to replace I from (17) by I × P from (19) with some probabilistic measure.
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4. Conclusion

We have shown that the proper analysis of the heat transfer equation with
temperature-variable characteristics, including the inverse problem of identification
of such characteristics, open to the uncertainty estimates, too, brings substantial
difficulties in comparison with the linearized model problems. However, these diffi-
culties can be overcome by means of recent functional and numerical analysis. More
detailed considerations (including complete proofs) should be published in the near
future.

The further research is motivated by the design of thermal accumulator, men-
tioned in Introduction, although the deep mathematical analysis does not seem to be
its most important part. Some original experimental devices and MATLAB-based
software packages have been prepared; the complete technical equipment must be
functional until the end of 2014.
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[19] Št’astńık, S., and Vala, J.: Identifikace tepelných vlastnost́ı materiálu pro
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Abstract

We present a method that in certain sense stores the inverse of the stiffness ma-
trix in O(N logN) memory places, where N is the number of degrees of freedom and
hence the matrix size. The setup of this storage format requires O(N3/2) arithmetic
operations. However, once the setup is done, the multiplication of the inverse matrix
and a vector can be performed with O(N logN) operations. This approach applies
to the first order finite element discretization of linear elliptic and parabolic problems
in triangular domains, but it can be generalized to higher-order elements, variety of
problems, and general domains. The method is based on a special hierarchical enu-
meration of vertices and on a hierarchical elimination of suitable degrees of freedom.
Therefore, we call it hierarchical condensation of degrees of freedom.

1. Introduction

This paper is devoted to Prof Karel Segeth on the occasion of his 70th birthday.
Karel stood at the very beginning of my scientific career as the supervisor of my
Master thesis and since then we have continued to work together as collaborators
and good friends until today. I am thankfull to him for many things he taught me,
for a lot of help and constant support. Karel has been interested in several topics
during his professional career. Efficient solution of large and sparse linear algebraic
systems, which is the topic of this paper, is one of them [2, 14, 15, 18]. In addition,
Karel studied the method of lines [13, 16, 19], higher-order finite elements [21], and
hierarchical approaches [17, 20]. These techniques are utilized below as well.

Solvers of large and sparse linear algebraic systems stemming from discretiza-
tions of partial differential equations are considered as the bottleneck of scientific
computing. Therefore, the efficiency of these solvers is of paramount importance.
In this contribution we concentrate on the lowest-order triangular finite element dis-
cretization [3, 23], which is one of the most often used discretization methods that
naturally yields large and sparse systems of linear algebraic equations. The sparse
direct solvers and preconditioned iterative methods are two principal approaches how
to solve such systems. The literature on this subject is vast. The interested reader
can consult books [4, 5, 6, 10, 11, 12] and references therein.
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In this contribution, we present a method that can be classified as a direct sparse
solver. The idea is based on hierarchically applied static condensation of internal
degrees of freedom (DOFs). The static condensation is often used in higher-order
finite element methods [21], where so-called internal (or bubble) DOFs appear. These
DOFs can be easily eliminated from the system in such a way that the resulting
Schur complement system is of smaller dimension, better conditioned, and it keeps
the original sparsity structure. See e.g. [25] for more details.

In this paper we consider the lowest-order finite element methods, where no
internal DOFs exist. However, we propose to construct a hierarchy of nested meshes
and consider certain DOFs of the finest mesh as internal with respect to elements
of the coarser (parental) mesh. These internal DOFs can be eliminated out by the
static condensation of internal DOFs. The remaining DOFs are associated with
the parental mesh. Considering this mesh as the finest one, the same elimination
procedure is repeated. We call this process the hierarchical condensation of DOFs.

During the hierarchical condensation certain auxiliary matrices are created. These
matrices can be used to solve the original system with O(N logN) arithmetic oper-
ations. However, the setup of these auxiliary matrices has complexity O(N3/2). On
the other hand, they can be stored in asymptotically O(N logN) memory places. For
these reasons, the hierarchical condensation of DOFs is especially useful for solving
a sequence of systems with the same matrix and many different right-hand sides. For
example, in the case of parabolic problems discretized in time by implicit methods.

For the sake of simplicity we present the approach using linear and symmetric
parabolic problem. However, generalizations to other type of problems are possible.
Generalizations to nonsymmetric, elliptic, Helmholtz, Maxwell, and similar type of
problems are especially straightforward. Further, in order to simplify the description
of the method, we consider triangular domains. However, generalization to arbitrary
domains is not difficult. It suffices to consider an initial (coarse) mesh of the domain
and apply the hierarchical condensation procedure to all triangular elements of the
coarse mesh. Finally, let us note that this approach is especially advantageous in
two spatial dimensions. In principal, it can be used in three and more spatial dimen-
sions, but the resulting matrices are denser and both the memory requirements and
computational complexity grow with the dimension.

The rest of this paper is organized as follows. A linear parabolic model problem
is introduced in Section 2. Section 3 describes the hierarchical meshes and a spe-
cial enumeration of DOFs. Section 4 forms the core of this paper and presents
the hierarchical condensation of DOFs. Section 5 provides the algorithm and Sec-
tion 6 computes its asymptotic complexity and memory requirements. Numerical
experiments that compare the performance of various standard approaches and the
hierarchical condensation of DOFs is presented in Section 7. Finally, Section 8 draws
the conclusions.
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2. Model problem

Let Ω ⊂ R
2 be a triangle and let T > 0 be fixed. We consider the following

linear parabolic problem in Ω with homogeneous Dirichlet boundary conditions. Find
u = u(t, x) such that

∂u/∂t −∆u = f in (0, T )× Ω,

u(t, x) = 0 for t ∈ [0, T ) and x ∈ ∂Ω, (1)

u(0, x) = u0(x) for x ∈ Ω.

In order to define the weak formulation of problem (1), we introduce the Sobolev
space V = H1

0 (Ω) and assume f ∈ L2(Ω) and u0 ∈ V . The weak solution u ∈
C([0, T ], V ) has the distributional time derivative u̇ = du/dt in C([0, T ], L2(Ω)) and
it satisfies

∫

Ω

u̇v dx+

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V, t ∈ (0, T ), (2)

and u(0, x) = u0(x) for a.a. x ∈ Ω.

We discretize (2) by the method of lines, see e.g. [13, 16, 19] for the works of
Karel Segeth on this topic. We use the usual first-order (piecewise linear) triangular
finite elements for the space discretization. Hence, we consider a triangulation Th of
the domain Ω and we define a subspace Vh ⊂ V of piecewise linear functions on Th

by

Vh = {vh ∈ V : vh|K ∈ P 1(K) for all K ∈ Th},

where P 1(K) is the three-dimensional space of linear functions in a triangle K ∈ Th.
Notice that all functions vh ∈ Vh are continuous in Ω.

The semidiscrete solution of (2) uh ∈ C1([0, T ], Vh) is given by

∫

Ω

u̇hvh dx+

∫

Ω

∇uh · ∇vh dx =

∫

Ω

fvh dx ∀vh ∈ Vh, t ∈ (0, T ), (3)

and uh(0, x) = u0,h(x) for x ∈ Ω, where u0,h ∈ Vh is a suitable projection of the
initial condition u0.

Equality (3) yields a system of linear ordinary differential equations. Indeed, let
us define the standard finite element hat functions ϕ1, ϕ2, . . . , ϕN [21, 23], where
N = dim Vh. Each hat function ϕj ∈ Vh equals to one at a vertex xj of the mesh Th

and vanishes at all the other vertices. If we expand the semidiscrete solution as
uh(t, x) =

∑N
j=1 yj(t)ϕj(x) then the expansion coefficients y = (y1, y2, . . . , yN)

T are
determined by the system of linear differential equations

Mẏ + Ay = F, y(0) = y0, (4)
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Figure 1: Triangulations of level 0, 1, and 2.

where the vector y0 of the initial condition is determined by the expansion u0,h =
∑N

i=1 y0,iϕi of u0,h into the basis of Vh. Further, the mass matrix M ∈ R
N×N , the

stiffness matrix A ∈ R
N×N , and the load vector F ∈ R

N have entries

Mij =

∫

Ω

ϕiϕj dx, Aij =

∫

Ω

∇ϕi · ∇ϕj dx, and Fi =

∫

Ω

fϕi dx.

Solving system (4) by a suitable method for systems of ordinary differential equa-
tions, we finally arrive at a fully-discrete solution to (1). In this paper we use so-called
θ-method [7, 9] with a fixed time step τ > 0. This method yields a system of linear
algebraic equations

Syk+1 = bk (5)

for the approximation yk+1 of y at time t = (k + 1)τ , k = 0, 1, 2, . . . . The matrix S
and the right-hand side vector bk are given as

S = M + τθA, bk = τF + (M − τ(1− θ)A)yk, k = 0, 1, 2, . . . ,

where θ ∈ [0, 1] is arbitrary and fixed. Let us note that the choices θ = 0, θ = 1/2,
and θ = 1 correspond to the explicit Euler method, Crank-Nicolson method, and
implicit Euler method, respectively.

In the subsequent parts of the paper we will concentrate on the hierarchical
condensation of DOFs, which is an efficient method for solving the sequence of linear
algebraic problems (5). Let us emphasize that we restrict ourselves to the case of
simple model problem (1) for the reason of clarity only. The hierarchical condensation
of DOFs can be applied to a wide class of much more general problems.

3. Mesh construction and enumeration of DOFs

The hierarchical condensation of DOFs is based on a hierarchy of successively
refined and nested triangular meshes. In this section we define the triangulation,
introduce its hierarchical structure represented by levels, and present a special enu-
meration of vertices of the triangulation (and the corresponding DOFs) that enables
relatively simple implementation of the method.
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level 0
level 1
level 2
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level 4

Figure 2: Levels of edges in the triangulation T 4
h of level 4.

The triangulation Th of the triangle Ω is constructed hierarchically using levels.
Triangulation T 0

h of level 0 consists of the single triangle Ω. Triangulation T ℓ
h of

level ℓ is obtained by splitting all triangles in T ℓ−1
h into four similar subtriangles, see

Figure 1. From now on we denote by L > 0 the fixed number of levels and we set
n = 2L the number of subedges on an edge of Ω. The triangulation Th = T L

h has n2

elements, it contains (n + 2)(n + 1)/2 vertices from which 3n lay on the boundary
∂Ω and (n − 1)(n − 2)/2 lay in the interior of Ω. Thus, the number of DOFs is
N = dim Vh = (n− 1)(n− 2)/2, because we consider Dirichlet boundary conditions.

In order to describe the special enumeration of vertices we introduce a level of

an edge. An edge in Th = T L
h is of level ℓ = 0, 1, 2, . . . , L if it lays on an edge of T ℓ

h

but not on any edge of T ℓ−1
h , T ℓ−2

h , . . . , T 0
h . For example, edges of level 0 are those

edges of Th which lay on the boundary ∂Ω. Levels of edges are indicated in Figure 2.

Level of a vertex is the smallest level of edges meeting at this vertex. Notice that
any interior vertex of level ℓ = 1, 2, . . . , L−1 lays on two edges of level ℓ and on four
edges of a higher level. Simply, all vertices of level ℓ lay on all edges of level ℓ. Since
vertices correspond to the finite element basis functions and consequently to DOFs,
we will naturally speak about levels of basis functions and DOFs.

The enumeration of vertices goes by levels. Since there are no vertices of level L,
we first enumerate vertices of level L−1, then vertices of level L−2, etc. Finally, we
enumerate vertices of level 1. Vertices of level 0 lay on the boundary of ∂Ω, where
we consider Dirichlet boundary conditions and hence there are no DOFs. Moreover,
the enumeration of vertices of level ℓ = L − 1, L − 2, . . . , 1 goes in natural order.
Precisely, there are always three interior edges of level ℓ in every element of T ℓ−1

h .
The enumeration of vertices of level ℓ goes by elements of T ℓ−1

h . We first enumerate
vertices of level ℓ on edges of level ℓ in the interior of the first element of T ℓ−1

h and
then we proceed to enumerate in the same way vertices inside the second element
of T ℓ−1

h , etc. Figure 3 presents an example of enumeration of vertices for L = 3. The
algorithm is as follows:
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Figure 3: Triangulations T 3
h and enumeration of vertices. The vertices of level 2

are enumerated first (indices 1,2,. . . ,12), then vertices of level 1 are enumerated
(13,14,. . . ,21). Notice that triplets of basis functions with indices 1,2,3; 4,5,6; 7,8,9;
and 10,11,12 form bubbles in elements of triangulation T 1

h .

for ℓ = L− 1, L− 2, . . . , 1 do
for all elements K in T ℓ−1

h do
enumerate all vertices lying on the three interior edges of level ℓ in K
(there are 2L−ℓ − 1 vertices on each such edge and all are of level ℓ)

end (loop through elements)
end (loop through levels)

4. Hierarchical condensation of DOFs

To describe the hierarchical condensation of DOFs, we introduce the notion of
bubble functions or shortly bubbles. A function is called a bubble in element K if it
is supported solely in K. The basis functions of level L−1 form bubbles in elements
of T L−2

h . We use the static condensation to eliminate these bubbles, i.e., we eliminate
all DOFs of level L− 1. In the remaining (Schur complement) system, the DOFs of
level L − 2 correspond to bubbles in elements of T L−3

h and they can be eliminated
in the same way. This procedure continues until we traverse the whole hierarchy of
meshes.

Now, we describe details of this procedure. The goal is to solve linear system

S(0)y(0) = b(0), (6)

where S(0) = S, y(0) = yk, and b(0) = bk come from (5) for a fixed k. Recall that the
number of DOFs (i.e. the size of this system) is N(0) = N = (n− 2)(n− 1)/2. The
algorithm goes in L− 2 steps for m = 1, 2, . . . , L− 2.

Step 1: (m = 1) In this step we eliminate DOFs of level L−1, which form bubbles in

elements of triangulation T L−2
h . The triangulation T L−2

h consists of (n/4)2 = 22(L−2)
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elements and there are three vertices of level L−1 inside of all these elements. Thus,
there are M(0) = 3 · 22(L−2) vertices of level L− 1. The DOFs corresponding to these
vertices were enumerated first and therefore their indices are 1, 2, . . . ,M(0). This
yields the following block structure of S(0) ∈ R

N(0)×N(0), y(0) ∈ R
N(0), and b(0) ∈ R

N(0) :

S(0) =

(

A(1) BT
(1)

B(1) D(1)

)

, y(0) =

(

x(1)

y(1)

)

, and b(0) =

(

F(1)

G(1)

)

, (7)

where A(1) ∈ R
M(0)×M(0) , B(1) ∈ R

(N(0)−M(0))×M(0) , D(1) ∈ R
(N(0)−M(0))×(N(0)−M(0)),

F(1) ∈ R
M(0), and G(1) ∈ R

N(0)−M(0). The matrix A(1) corresponds to bubble functions
and therefore it is blockdiagonal, consisting of (n/4)2 = 22(L−2) blocks of size 3× 3.

The bubble DOFs, i.e. the unknowns x(1), can be efficiently eliminated. The
remaining DOFs, i.e. the unknowns y(1), are then given by a Schur complement
system. To be more specific, we compute the block-wise inverse A−1

(1) and use it to
obtain the Schur complement S(1) and the complement load b(1) as

S(1) = D(1) − B(1)A
−1
(1)B

T
(1) and b(1) = G(1) − B(1)A

−1
(1)F(1).

The two components of the coefficient vector y(0) = (x(1), y(1))
T are then given by

S(1)y(1) = b(1) and x(1) = A−1
(1)(F(1) − BT

(1)y(1)).

Thus, as soon as the vector y(1) is known, the vector x(1) can be easily and
efficiently computed. In order to compute y(1), we have to solve a system with
matrix S(1). The Schur complement S(1) has a similar structure as the original
matrix S(0) in the sense that vertices of level L − 2 correspond to bubbles in the
triangulation T L−3

h . Consequently, DOFs of level L− 2 can be eliminated from S(1)

in the same way as DOFs of level L − 1 were eliminated from S(0). As a result,
we obtain a Schur complement S(2) and the whole procedure can be repeated. In
general, the m-th step of the algorithm is as follows.

Step m: (Elimination of DOFs of level L − m.) Put N(m−1) = N(m−2) − M(m−2)

and set M(m−1) = 3(2m − 1)(n/2m+1)2 = 3(2m − 1)22(L−m−1). The matrix S(m−1) is
of size N(m−1) ×N(m−1) and the coefficient vector y(m−1) and the load vector b(m−1)

are of length N(m−1). There is M(m−1) bubble functions corresponding to vertices of
level L−m. Thanks to the special enumeration of vertices from Section 3 the DOFs
corresponding to these bubble functions have indices 1, 2, . . . ,M(m−1) with respect
to S(m−1). This naturally introduces the block structure

S(m−1) =

(

A(m) BT
(m)

B(m) D(m)

)

, y(m−1) =

(

x(m)

y(m)

)

, b(m−1) =

(

F(m)

G(m)

)

, (8)

where A(m) ∈ R
M(m−1)×M(m−1) , B(m) ∈ R

(N(m−1)−M(m−1))×M(m−1) , etc. The matrix A(m)

corresponds to bubble DOFs and it is block diagonal with (n/2m+1)2 = 22(L−m−1)
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blocks of size 3(2m − 1) × 3(2m − 1). We invert A(m) and compute the Schur com-
plement as well as the complement load as

S(m) = D(m) − B(m)A
−1
(m)B

T
(m) and b(m) = G(m) − B(m)A

−1
(m)F(m). (9)

The components of the coefficient vector y(m−1) = (x(m), y(m))
T are determined by

S(m)y(m) = b(m) and x(m) = A−1
(m)(F(m) −BT

(m)y(m)).

Step L− 1: After L− 2 steps (for m = 1, 2, . . . , L− 2), we are left with system

S(L−2)y(L−2) = b(L−2) (10)

with fully populated matrix S(L−2) ∈ R
3(n/2−1)×3(n/2−1). We can solve this system by

a standard approach such as the Cholesky decomposition for instance. As a result,
we obtain the coefficients y(L−2) and we can compute the remaining ones by backward
substitution.

Backward substitution: The remaining vectors of unknowns x(m), m = L − 2,
L− 3, . . . , 1, are easily computed as

x(m) = A−1
(m)(F(m) − BT

(m)y(m)) and y(m−1) =

(

x(m)

y(m)

)

. (11)

Once the matrix S(0) is hierarchically decomposed by the above algorithm, the
next linear system with matrix S(0) and a different right-hand side b(0) can be
solved very efficiently. It suffices to store matrices Q(m) = B(m)A

−1
(m), A−1

(m), for

m = 1, 2, . . . , L− 2, and S−1
(L−2). The given right-hand side b(0) is then hierarchically

split into vectors F(m), m = 1, 2, . . . , L − 2, and vector b(L−2) using matrices Q(m),
see (9). The final Schur complement system (10) is then solved using the stored
matrix S−1

(L−2). Finally, the backward substitution (11) is performed utilizing matri-

ces A−1
(m) and QT

(m) for m = L− 2, L− 1, . . . , 1.
Let us note that storing matrices Q(m) instead of B(m) increases the efficiency

of the entire procedure significantly. On the other hand the matrix Q(m) has more
nonzero entries than B(m) and its storage requires more memory. However, the
difference is not large and asymptotically both these matrices have O(N) nonzero
entries. For details see Section 6 below.

5. Algorithm

In this section we rigorously describe the algorithm of hierarchical static con-
densation of DOFs with the emphasis on many linear algebraic systems with the
same matrix and different right-hand side vectors. The rigorous formulation of the
algorithm will be utilized in Section 6 to compute its complexity and memory re-
quirements.
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The algorithm consists of setup and solve phases. We consider the enumeration
of DOFs from Section 3 and use M(m−1) = 3(2m − 1)2L−m−1 to denote the number
of bubble DOFs of level L−m, m = 1, 2, . . . , L− 2.

First, we describe the setup phase. Its input is the matrix S(0) ∈ R
N(0)×N(0) that

comes from the finite element discretization, see (6). The output consists of matri-
ces Q(m), A

−1
(m) for m = 1, 2, . . . , L−2, and S−1

(L−2) that are needed in the solve phase.

Setup phase:

1. For m = 1, 2, . . . , L− 2 do the following:

(a) Split the matrix S(m−1) into blocks A(m), B(m), and D(m) as in (8).

(b) Matrix A(m) is block-diagonal with 2L−m−1 blocks of size 3(2m − 1) ×
3(2m − 1). Use block-wise inversion to compute A−1

(m).

(c) Perform the sparse matrix multiplication Q(m) = B(m)A
−1
(m).

(d) Compute the Schur complement matrix S(m) = D(m) −Q(m)B
T
(m), see (9).

(e) Update N(m) = N(m−1) −M(m−1).

2. Compute the inverse S−1
(L−2) of the fully populated matrix S(L−2).

3. Output matrices Q(m), A
−1
(m) for m = 1, 2, . . . , L− 2, and S−1

(L−2).

Second, we present the solve phase. Its input data consist of a vector b(0) ∈ R
N(0) ,

matrices Q(m), A
−1
(m) for m = 1, 2, . . . , L− 2, and matrix S−1

(L−2). The output is a vec-

tor y(0) that solves system (6).

Solve phase:

1. For m = 1, 2, . . . , L− 2 do the following:

(a) Split vector b(m−1) into two blocks F(m) and G(m) as in (8).

(b) Compute b(m) = G(m) −Q(m)F(m), see (9).

(c) Update N(m) = N(m−1) −M(m−1).

2. Solve the Schur complement problem: y(L−2) = S−1
(L−2)b(L−2).

3. Perform the backward substitution. Form = L−2, L−3, . . . , 1 do the following:

(a) Compute x(m) = A−1
(m)F(m) −QT

(m)y(m).

(b) Update y(m−1) = (x(m), y(m))
T .

4. Output vector y(0).
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6. Computational complexity and memory requirements

In this section we compute the complexity and the memory requirements of the
setup and the solve phase of the algorithm from Section 5. By the complexity we
understand the asymptotic number of arithmetic operations need to perform the
algorithm. The memory requirements are represented by the asymptotic number of
memory places needed to store the data structures. We recall that L stands for the
fixed number of levels, n = 2L denotes the number of mesh-edges on one edge of Ω,
and N = (n− 2)(n− 1)/2 is the number of DOFs (the size of matrix S).

Theorem 1. The complexity of the setup phase is O(N3/2).

Proof. For each m = 1, 2, . . . , L − 2 we invert the block diagonal matrix A(m).
The number of arithmetic operations needed to invert a block diagonal matrix is
proportional to the number of blocks multiplied by the size of each block cubed:

Nop

(

A−1
(m)

)

≈ 22(L−m−1) · [3(2m − 1)]3. Further, we have to invert a dense ma-

trix S(L−2). This requires Nop

(

S−1
(L−2)

)

≈ [3(2L−1 − 1)]3 operations. The number of

arithmetic operations needed for the other steps of the setup phase is asymptotically

minor with respect to Nop

(

A−1
(m)

)

and Nop

(

S−1
(L−2)

)

. Thus, the complexity of the

setup phase is

Nop

(

S−1
(L−2)

)

+
L−2
∑

m=1

Nop

(

A−1
(m)

)

≈ (2L)3 = n3 ≈ N3/2.

Theorem 2. The complexity of the solve phase is O(N logN).

Proof. The most significant operation in step 1 of the solve phase is the matrix-
vector multiplication Q(m)F(m). This multiplication requires a number of operations
proportional to the number of nonzero entries in Q(m). It is at most twice the number
of vertices of levels less then L−m times the number of vertices of level L−m inside
one element of mesh T L−m−1

h . Thus, this number can in general reach the value up
to

NNZ

(

Q(m)

)

= 2× (N(m−1) −M(m−1))× 3(2m − 1), (12)

where N(m−1) = 3(2m − 1)2L−m−1(2L−m − 1) is the number of vertices of levels less
than or equal to L−m and M(m−1) = 3(2m − 1)22(L−m−1) is the number of vertices
of level L − m. Consequently, N(m−1) − M(m−1) = 3(2m − 1)(22(L−m−1) − 2L−m−1).
Since the matrix-vector multiplication Q(m)F(m) is performed for m = 1, 2, . . . , L−2,
the complexity of step 1 is proportional to

L−2
∑

m=1

NNZ

(

Q(m)

)

=
L−2
∑

m=1

18(2m − 1)2
(

22(L−m−1) − 2L−m−1
)

= (9L− 42)22L−1

+ (18L+ 9)2L + 12 =
n2

2
(9 log2 n− 42) + n(18 log2 n+ 9) + 12 ≈ N logN. (13)
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In step 2 we multiply the vector b(L−2) by the fully populated matrix S−1
(L−2) of

size 3(2L−1 − 1)× 3(2L−1 − 1). The complexity of this operation is

32(2L−1 − 1)2 ≈ n2 ≈ N.

In step 3 we perform matrix-vector multiplications with matrices A−1
(m) and QT

(m)

for m = L − 2, L − 3, . . . , 1. The complexity of multiplication by matrix A−1
(m) is

proportional to the number of its nonzero entries, which is less than the number
of nonzero entries of QT

(m). Multiplications by the matrices QT
(m) and Q(m) are of

the same complexity proportional to NNZ

(

Q(m)

)

, see (12). Thus, the complexity of
step 3 is proportional to N logN as in step 1. Consequently, the total complexity of
the solve phase is O(N logN).

Theorem 3. The memory requirements to store matrices Q(m), A−1
(m) for m =

1, 2, . . . , L− 2, and matrix S−1
(L−2) are O(N logN).

Proof. The fully populated matrix S−1
(L−2) contains NNZ

(

S−1
(L−2)

)

= (3(n/2 − 1))2 =

9/4n2 − 9n + 9 entries. The number of nonzero entries in matrix A−1
(m) is equal to

the number of its blocks times the size of the block squared, i.e. NNZ

(

A−1
(m)

)

=

22(L−m−1)[3(2m − 1)]2. Thus, for all m = 1, 2, . . . , L− 2 we have

NNZ

(

A−1
)

=
L−2
∑

m=1

NNZ

(

A−1
(m)

)

= 22L−2(9L− 33) + 18 · 2L − 12

=
n2

4
(9 log2 n− 33) + 18n− 12.

The total number of nonzero entries in all matrices Q(m) for m = 1, 2, . . . , L− 2 was
computed above, see (13). Hence, we can conclude that the total amount of memory
places needed to store matrices Q(m), A

−1
(m) for m = 1, 2, . . . , L−2, and matrix S−1

(L−2)

is asymptotically proportional to N logN .

Let us note that the original stiffness matrix S(0) contains NNZ

(

S(0)

)

= 7(n− 2)
(n−1)/2−6(n−2) = (7n2−33n+38)/2 nonzero entries. Making rough estimates and
considering a sufficiently high number of levels L, we may say that the total memory
requirements to store matrices Q(m), A

−1
(m) for m = 1, 2, . . . , L − 2, and S−1

(L−2) are

about 2(L− 4) times higher than NNZ

(

S(0)

)

.

7. Numerical experiments

In this section we compare the performance of the above described hierarchical
condensation of DOFs with standard methods. The numerical tests are done in
Matlab and the hierarchical condensation is compared with standard Matlab im-
plementations of fully populated matrix inversion, sparse Cholesky factorization,
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conjugate gradients (CG) preconditioned by the incomplete Cholesky factorization
and an optimized direct sparse solver (backslash command in Matlab).

We consider the parabolic problem (1) in a triangle Ω with vertices [0, 0], [1, 0],
and [0.7, 0.8] for t ∈ (0, 100). The right-hand side and the initial conditions are chosen
as f = 1 and u0 = λ4

1λ2λ3, where λ1, λ2, λ3 are barycentric coordinates in Ω. This
problem is discretized as described in Section 2. We use the time step τ = 0.1 and the
Crank-Nicolson method (θ = 1/2) for time discretization. The space discretization
is done on a sequence of uniform and successively refined meshes. We construct the
meshes as described in Section 3 for the number of levels L = 4, 5, . . . , 10.

During the time evolution, it is necessary to solve system (5) in total 1000 times
(the final time is T = 100 and the time step is τ = 0.1). Before the first system (5)
is solved, we perform a setup phase for the given matrix S, store the necessary data,
and then we run the solve phase 1000 times.

The first of the tested methods is to compute the fully populated matrix inverse
in the setup phase, store the inverse, and then just multiply the right-hand side by
this inverse in the solve phases. This method is very inappropriate for the presented
problem, because it ignores the sparsity of matrix S. We include it in the test in
order to illustrate the magnitude of this inappropriateness.

The second method is a sparse Cholesky factorization with the approximate min-
imum degree permutation trying to minimize the fill-in. A suitable permutation and
the Cholesky factor of permuted S are computed in the setup phase. The stored
permutation and the Cholesky factor are then used in the solve phases.

The third method is the CG method preconditioned by incomplete Cholesky
factorization with no fill-in. In the setup phase we construct the preconditioner,
store it, and use it in the solve phases. The initial approximation is taken from the
previous time step and the CG iterations are stopped as soon as the relative residual
decreases below 10−6. This was always happening in a few iterations.

The fourth method is the backlash command of Matlab. It is a highly optimized
procedure combining various sparse direct solvers for various types and sizes of ma-
trices. We perform no setup phase and use the backslash command directly in the
solve phases. Finally, the fifth method is the hierarchical condensation of DOFs as
described above.

Figure 4 presents the CPU-times required to perform the setup phase (left panel)
and the CPU-times for 1000 solve phases (right panel). We see that the hierarchical
condensation has the fastest solve phase of all tested methods. It is more than two
times faster than the sparse Cholesky factorization. The setup phase of the hier-
archical condensation is the second fastest after the sparse Cholesky factorization.
However, the asymptotic complexity of the setup phases of the hierarchical conden-
sation and sparse Cholesky factorization seems to be the same in this example. The
other methods are not competitive with the exception of the preconditioned CG. Its
performance during the solve phase is relatively improving with growing number of
DOFs, however the complexity of its setup phase is considerably higher than the
complexity of the setup phase of both sparse Cholesky factorization and hierarchi-
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Figure 4: CPU-times for the setup phase (left) and for the 1000 of solve phases
(right). Notice the logarithmic scales and zero setup time for the backslash solver.

cal condensation. Let us note that the full-inverse approach runs over the available
memory starting from the number of levels L = 8.

Further, let us note that no special effort was made to optimize the Matlab code of
hierarchical condensation for speed. The code is relatively simple, it contains a few
short for-cycles and the majority of CPU-time is spent by various sparse matrix
operations. Therefore, we assume that the differences due to the compiled codes (in-
version, Cholesky factorization, and backlash) and interpreted codes (preconditioned
CG and hierarchical condensation) are not fundamental.

8. Conclusions

In this paper we presented a hierarchical condensation of DOFs, which is a direct
sparse method for solving linear algebraic systems. We prove that the setup phase
requires O(N3/2) arithmetic operations, the resulting data are stored in O(N logN)
memory places, and the solve phase takes O(N logN) operations, where N stands
for the number of DOFs.

The method was presented using a simple model problem, a triangular domain,
and the lowest-order finite element method. However, generalizations to more general
problems and domains are straightforward as well as generalization to higher-order
finite elements. Generalizations to higher spatial dimensions are possible as well.

A clear bottleneck of this approach is the setup phase which has a suboptimal
complexity, because the expected optimal complexity would be O(N), see e.g. multi-
grid approaches [1, 24] or optimal methods in special domains [8, 22].

Nevertheless, the hierarchical condensation of DOFs provides an insight into the
structure of the inverse of the finite element matrices. We believe that this insight
can be fruitful if it enables to modify the setup phase such that it is performed
approximately and fast. This approximate inverse can then serve as an efficient and
hopefully optimal preconditioner.
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Abstract

The existence of spherically symmetric solutions is proved for a new phase-field
model that describes the motion of an interface in an elastically deformable solid,
here the motion is driven by configurational forces. The model is an elliptic-parabolic
coupled system which consists of a linear elasticity system and a non-linear evolution
equation of the order parameter. The non-linear equation is non-uniformly parabolic
and is of fourth order. One typical application is sintering.

1. Introduction

A central tenet in materials science is that many properties of materials are de-
termined by microstructure. Microstructure can be defined as the totality of all ther-
modynamic non-equilibrium lattice defects on a space scale ranging from Ångstrøms
to meters. By their dimension, defects can be arranged in the following hierarchy:
i) zero-, ii) one-, iii) two-, iv) three-dimensional defects. Their typical examples are,
respectively, point defects, dislocations, grain boundaries and voids. The driving
forces for the evolution of defects are of the Eshelby type that is radically different
to the Newton type.

We shall study, in this paper, the evolution of two-dimensional defects, taking
grain boundary as an example, by employing a phase-field approach that is still
young but has been shown powerful and important for both theoretical and numer-
ical investigations, especially for multi-dimensional problems, see, e.g. [8, 10, 13].
Starting from a sharp interface model based on a formula of configurational forces in
terms of the Eshelby tensor, Alber and Zhu [1, 2] have formulated a new phase-field
model which differs from the famous Cahn-Hilliard model (see [7]) by a non-smooth
gradient term. An application of our model is to describe sintering, a technique for
making a material from powders.

To state the new model we now introduce some notations. Let Ω be an open
subset in R

3. It stands for the set of material points of a solid body. The different
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phases of a solid are indicated by an order parameter S(t, x) ∈ R: That S takes
values near to zero or one means the solid is in phase γ or γ′. Other unknowns are
the displacement u(t, x) ∈ R

3 of the material point x at time t and the Cauchy stress
tensor T (t, x) ∈ S3. Here S3 denotes the set of symmetric 3 × 3-matrices. We shall
investigate the quasi-static process, the unknowns thus must satisfy the following
equations

−divx T (t, x) = b(t, x), (1)

T (t, x) = D
(

ε(∇xu)− ε̄S
)

(t, x), (2)

St(t, x) = c divx

(

∇x

(

ψS(ε(∇xu), S)− ν∆xS
)

|∇xS|
)

(t, x), (3)

for (t, x) ∈ (0,∞)× Ω, and the boundary and initial conditions

u(t, x) = γ(t, x), (t, x) ∈ [0,∞)× ∂Ω, (4)

∂

∂n
S(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (5)

∂

∂n

(

ψS(ε, S)− ν∆xS
)

|∇xS|(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (6)

S(0, x) = S0(x), x ∈ Ω̄. (7)

Here n is the unit outward normal vector, ∇xu denotes the 3×3-matrix of first order
derivatives of u, the deformation gradient, and

ε (∇xu) =
1

2

(

∇xu+ (∇xu)
T )

is the strain tensor, where (∇xu)
T denotes the transposed matrix. Further, ε̄ ∈ S3

is a given matrix, the transformation strain. The elasticity tensor D : S3 → S3 is
a linear, symmetric, positive definite mapping, and ψS is the derivative with respect
to S of the free energy

ψ∗(ε, S,∇xS) = ψ(ε, S)+
ν

2
|∇xS|2 =

1

2

(

D(ε− ε̄S)
)

· (ε− ε̄S)+ ψ̂(S)+ ν

2
|∇xS|2, (8)

where for ψ̂ : R → [0,∞) we choose a double well potential with minima at points
S ≤ 0 and S ≥ 1. The scalar product of two matrices is A ·B =

∑3
i,j=1 aijbij . Thus,

ψS(ε, S) = −T · ε̄+ ψ̂′(S). (9)

Given are the positive constant c, the small positive constant ν, the volume force
b : [0,∞) × Ω → R

3 and the boundary and initial data γ : [0,∞) × ∂Ω → R
3,

S0 : Ω → R.
We thus complete the formulation of an initial-boundary value problem. The

equations (1) and (2) differ from the system of linear elasticity only by the term ε̄S,
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which couples this system to equation (3). The evolution equation (3) for the order
parameter S is non-uniformly parabolic because of the term divx (|∇xS|∇x∆xS).

Statement of the main result. Since we shall look for spherically symmetric
solutions to problem (1)–(7), we can make suitable assumptions to reduce the prob-
lem to its one space dimensional form. To this end we now assume that the body
force boundary and initial data and the unknowns, which are defined in the domain
Ω× (0, Te), have the following form

b(t, x) = b̂(t, r)
x

r
, γ(t, x) = γ̂(t, r), S0(x) = Ŝ0(r)

and
u(t, x) = û(t, r)

x

r
, S(t, x) = Ŝ(t, r),

respectively, where Te is a positive constant which denotes the life-span of weak
solutions, r = |x|, Ω = {x ∈ R

3 | a < r < d } for two positive constant a, d
satisfying a < d, and b̂, γ̂, Ŝ0 are given functions and û, Ŝ are scalar functions to
be determined, which depend only on t, r. We write

x = (xi), u = (ui), T = (Tij), D = (Dij
kl),

hereafter, i, j, k, l = 1, 2, 3, and we assume that D satisfies the properties of sym-
metry: Dij

kl = Dkl
ij = Dij

lk = Dji
kl. Moreover we assume that the material is isotropic,

namely we have

Dij
kl = µ1δikδjl +

µ2

3
δijδkl, (10)

where δij is the Kronecker delta, and µ1 > 0, µ2 ≥ 0 are constants. For ε̄, we assume
that

ε̄ij = λδij . (11)

Then it follows that

Dε = µ1ε+
µ2

3
Trace(ε)I, Dε̄ = µ1λI +

µ2

3
Trace(λI), I = (µ1 + µ2)I, (12)

here for a matrix A, Trace(A) denotes the trace of A. Hence,

Dε · ε = µ1ε · ε+
µ2

3
(Trace(ε))2 > 0 ∀ε 6= 0. (13)

Under these assumptions, equations (1)–(3) are reduced to

ûrr +
2

r
ûr −

2

r2
û = G, (14)

∂

∂t
Ŝ + c

∂

∂r

(

(νŜrrr + F2)|Ŝr|
)

= −2c

r
(νŜrr + F1)|Ŝr| , (15)
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with F1,F2,G being nonlinear functions defined by

G = G(Ŝr, b̂) =
λ

µ
Ŝr +

b̂

µ
, (16)

F1 = F1

(

û, ûr, ûrr, Ŝ, Ŝr

)

= λ
(

ûr +
2

r
û
)

+
2ν

r
Ŝr −Dε̄ · ε̄Ŝ − ψ̂′(Ŝ), (17)

F2 = F2

(

û, ûr, ûrr, Ŝ, Ŝr, Ŝrr

)

= F1,r. (18)

Since eq. (14) is linear, the inhomogeneous Dirichlet boundary condition for û
can be reduced to the homogeneous one. So we may assume for simplicity that γ̂ = 0.
Hence, simple computations show that (14) can be rewritten as

ûr +
2

r
û =

λ

µ
Ŝ +

1

µ

∫ r

a

b̂(t, y)dy + C(t), (19)

here, C(t) is a constant depending on t and γ̂(t, r) which is zero by assumption. It
thus follows from formula (19) and the boundary conditions for û that

û =
1

r2

(

λ

µ

∫ r

a

y2Ŝ(t, y)dy +
1

µ

∫ r

a

x2
∫ x

a

b̂(t, y)dydx

)

− 1

r2
r3 − a3

d3 − a3

(

λ

µ

∫ d

a

y2Ŝ(t, y)dy +
1

µ

∫ d

a

x2
∫ x

a

b̂(t, y)dydx

)

. (20)

Therefore, (14)–(15) can be reduced to the following single equation

∂

∂t
(r2Ŝ) + c

∂

∂r

(

r2(νŜrrr + F)|Ŝr|
)

= 0, (21)

with

F =
λ

µ
(λŜr + b̂) +

(

2ν

r
Ŝr −Dε̄ · ε̄Ŝ − ψ̂′(Ŝ)

)

r

. (22)

The boundary and initial conditions become

(νŜrrr + F)|Ŝr| = 0, (t, r) ∈ [0, Te]× ∂Ω, (23)

Ŝ(0, r) = Ŝ0(r), r ∈ Ω. (24)

Consequently, the existence of spherically symmetric solutions to problem (1)–(7)
is equivalent to solvability of problem (21)–(24), since û can be obtained from for-
mula (20) once Ŝ is known.

The domain Ω is reduced to an interval: Ω = (a, d) is a bounded open interval
with constants a < d. We write QTe

:= (0, Te)× Ω, where Te is a positive constant.

To state the existence result for this problem we need two definitions. For
A ⊂ QTe

, g : A → V ⊂ R and t ∈ [0, Te] let

A(t) = {x | (t, x) ∈ A} and g(t) : A(t) → V, g(t)(x) = g(t, x).
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Definition 1.1 Let A ⊂ QTe
such that A(t) is open for almost all t ∈ [0, Te], and

let α ∈ N0. We call g : A → R the α-th local weak derivative of S ∈ L2(QTe
) with

respect to x in A, if for almost all t ∈ [0, Te] the function g(t) belongs to L2,loc(A(t))
and is the local weak derivative of S in the usual sense:

g(t) = ∂αxS(t)|A(t), (25)

and if moreover there exists a sequence {An}n of measurable sets An ⊂ A with
g|An

∈ L2(An) for all n ∈ N, such that

meas

(

A \
∞
⋃

n=1

An

)

= 0.

Remark 1. The uniqueness of local weak derivatives in the sense of this definition
is obvious because of (25), and it is clear that if A is open and if S has the local
weak derivative ∂αxS in the usual sense in A, then ∂αxS is also a local weak derivative
in the sense of our definition. So Definition 1.1 generalizes the ordinary definition;
this allows us to use the same name and the same notation ∂αxS as for ordinary local
weak derivatives.

For a function S ∈ L2(0, Te;H
2
N(Ω)), where H

2
N(Ω) =

{

f ∈ H2(Ω) | ∂
∂n
f = 0,

on ∂Ω}, let
AS = {(t, r) ∈ QTe

| |Sr(t, r)| > 0}.
By the Sobolev embedding theorem we see that Sr(t) is continuous for almost all
t ∈ (0, Te). This implies that AS(t) is open for almost all t.

Definition 1.2 Let b̂ ∈ L∞(0, Te;L
2(Ω)) and Ŝ0 ∈ L2(Ω). A function Ŝ with

Ŝ ∈ L2(0, Te;H
2(Ω)) ∩ L∞(QTe

), Ŝr(t) ∈ H1
0 (Ω) a.e. in (0, Te), (26)

is a weak solution of the problem (21) – (24), if and only if Ŝ, with local weak

derivative Ŝrrr in AŜ and |Ŝr|Ŝrrr ∈ L1(AŜ), satisfies that

(r2Ŝ, ϕt)QTe

+ c
(

νr2Ŝrrr|Ŝr|, ϕr

)

AŜ

+ c
(

r2F|Ŝr|, ϕr

)

QTe

+ (r2Ŝ0, ϕ(0))Ω = 0 (27)

holds for all ϕ ∈ C∞
0 ((−∞, Te)× R).

For the function ψ̂, we need the following
Assumptions A. The function ψ̂(S) is a smooth double-well potential, and it has
two local minima at S− and S+ with S− < S+, one local maximum at S∗ satisfying
S− < S∗ < S+; and ψ̂

′(S) > 0 for S− < S < S∗ and ψ̂′(S) < 0 for S∗ < S < S+.
For simplicity, we assume further that

ψ̂(k)(S+) = 0 for 1 ≤ k ≤ 2m1 − 1, ψ̂(2m1)(S+) > 0,

ψ̂(k)(S−) = 0 for 1 ≤ k ≤ 2m2 − 1, ψ̂(2m2)(S−) > 0.
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and that ψ̂(S) ∼ S2ℓ1 as S → ∞, ψ̂(S) ∼ S2ℓ2 as S → −∞, where m1, m2, ℓ1,
and ℓ2 are positive integers. Let ℓ = max{ℓ1, ℓ2}. Assume that ℓ > 1.

Remark 2. One typical example of ψ̂ which satisfies assumptions A is ψ̂(S) =
(S(1− S))2, with S+ = 1, S− = 0, ℓ = ℓ1 = ℓ2 = 2 and m1 = m2 = 1.

We are now in a position to state the main result of this paper.

Theorem 1.3 Assume that the double-well potential ψ̂ satisfies assumptions A. Then
to all Ŝ0 ∈ H1(Ω) and b̂ ∈ L2(QTe

) with b̂t ∈ L2(QTe
) there exists a weak solution Ŝ

to (21)–(24), which in addition to (26) satisfies (20) and

Ŝ ∈ L∞(0, Te;H
1(Ω)), Ŝt ∈ L

4

3 (0, Te;W
−1, 4

3 (Ω)), (28)

|Ŝr|Ŝrrr ∈ L
4

3 (QTe
), (29)

where we defined |Ŝr|Ŝrrr = 0 on QTe
\ AŜ .

The main difficulties of the proof of this theorem are caused by the term |Sr|
which results in that eq. (21) is degenerate and its coefficients are non-smooth. The
coefficient of the principal term in (21) contains |Sr|, so this principal term can only

be defined over a domain AŜ which may be not open. This leads to the difficulty of
definition of weak derivatives Ŝrrr.

Related results are Alber and Zhu [1] – [6], Kawashima and Zhu [12], and
those for the degenerate Cahn-Hilliard equation and for the equation of thin film
St = −divx(m(S)∇x∆xS), where m(S) vanishes at zero. We refer to [9, 11] and
the references therein. However, the mathematical properties of (3) containing the
term |∇xS| differ essentially from the ones of these equations.

2. Sketch of the proof of the main result

The proof of Theorem 1.3 consists of the following three steps. For simplicity, we
drop the upper-script ,̂ i.e. change Ŝ, · · · back to S, · · · .
Step 1. Construction of approximate solutions

To construct approximate solutions to (21)–(24) we prove that there exist weak
solutions to the following initial-boundary value problem

(r2S)t + c
(

r2(νSrrr + Fκ)|Sr|κ
)

r
= 0 in QTe

, (1)

Sr = 0 on [0, Te]× ∂Ω, (2)

(Fκ + νSrrr)|Sr|κ = 0 on [0, Te]× ∂Ω, (3)

S|t=0 = S0 in Ω , (4)

where κ is a fixed positive constant, |y|κ is defined by |y|κ =
√

|y|2 + κ2, and Fκ is
the smoothed F in which b is replaced by its smooth approximation bκ.
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Eq. (1) is quasi-linear, uniformly parabolic over a domain that Sr is bounded.
However it is not easy to prove the existence of classical solution to prob-
lem (1)–(4), whence we consider the weak solutions to this problem. By def-
inition, S ∈ L2(0, Te;H

1(Ω) with Srrr ∈ L2(QTe
) is a weak solution of (1)–(4) if and

only if for all ϕ ∈ C∞
0 ((−∞, Te)× R)

−(r2S, ϕt)QTe

= (r2S0, ϕ(0))Ω + c
(

r2(νSrrr + Fκ)|Sr|κ, ϕr

)

QTe

. (5)

Step 2. Main a-priori estimates

Lemma 2.1 There is a constant C, independent of κ, such that for any t ∈ [0, Te]

‖Sκ
r ‖2H1(Ω) +

∫

Qt

(|Sκ
r |κ + κ)|Sκ

rrr|2d(τ, y) ≤ C, (6)

‖ |Sκ
r |κSκ

rrr‖L 4
3 (Qt)

≤ C. (7)

Step 3. Limits

To investigate the limits of approximate solutions constructed in Step 1, we need
the Egorov theorem.

Theorem 2.2 (Egorov) Let (Γ,Σ, µ) be a measure space with µ(Γ) <∞, let f, f 1, f 2,
f 3, · · · be real valued, measurable functions on Γ, and assume that f j(x) → f(x) as
j → ∞ for almost every x ∈ Γ.

Then, for every ε > 0 there is a subset Mε ⊂ Γ with µ(Mε) > µ(Γ)− ε such that
f j(x) converges to f(x) uniformly on Mε. That is, for every δ > 0 there is an Nδ

such that when j > Nδ we have that for every x ∈Mε

|f j(x)− f(x)| < δ.

With the help of this theorem we can get the local weak derivative Srrr as follows.
Decompose the set Ân = {(t, r) ∈ QTe

| |Sr(t, r)| > 1
n
} into a set An (on which the

sequence Sκ
r converges uniformly to Sr and thus satisfies |Sκ

r | ≥ 1
2n

for sufficiently

small κ) and the set Ân \An (which has small measure). Using the uniform estimate
∫

QTe

(|Sκ
r |κ + κ)|Sκ

rrr|2 d(τ, r) ≤ C, we can then show that Sκ
rrr converges in L2(An)

to Srrr. Finally, we apply the fact that AS differs from
⋃∞

n=1An only by a set of
measure zero. We then have the following key lemma.

Lemma 2.3 The limit function S has the local weak L2–derivative Srrr on AS in
the sense of Definition 1.1. Moreover, there exists a subsequence Sκ such that
|Sκ

r |κSκ
rrr ⇀ χ, weakly in L

4

3 (QTe
), where the function χ = χ(t, r) in L

4

3 (QTe
) is

given by χ = 0, if Sr = 0, and = |Sr|Srrr, if Sr 6= 0.
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Abstract

Multi-dimensional advection terms are an important part of many large-scale
mathematical models which arise in different fields of science and engineering. After
applying some kind of splitting, these terms can be handled separately from the re-
maining part of the mathematical model under consideration. It is important to treat
the multi-dimensional advection in a sufficiently accurate manner. It is shown in
this paper that high order of accuracy can be achieved when the well-known Crank–
Nicolson numerical scheme is combined with the Richardson extrapolation.

1. Multi-dimensional advection equations

Consider the multi-dimensional advection equation:

∂c

∂t
= −

Q∑
q=1

uq
∂c

∂xq
(1)

with Q ≥ 0, t ∈ [a, b] and xq ∈ [aq, bq] for q = 1, 2, . . . , Q. It is assumed that
the coefficients uq = uq(t, x1, x2, . . . xQ), q = 1, 2, . . . , Q, before the spatial partial
derivatives in the right-hand-side of the partial differential equation (1) are some
given functions.
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Let D be the domain in which the independent variables involved in (1) vary and
assume that:

(t, x1, x2, . . . xQ) ∈ D ⇒ t ∈ [a, b] ∧ x0 ∈ [aq, bq] for q = 1, 2, . . . , Q. (2)

By applying the definition proposed in (2), it is assumed here that the obtained
domain D is rather special (being a multi-dimensional parallelepiped), but this
assumption is done only for the sake of simplicity. In fact, many of the results
will also be valid for some considerably more complicated domains.

It will always be assumed that the unknown function c = c(t, x1, x2, . . . , xQ)
is continuously differentiable up to some order 2p with p ≥ 1 in all points of the
domain D and with respect to all independent variables. Here p is the order of
the numerical method which will be used in order to obtain some approximations
of the unknown function at the points of some grid, which is appropriately selected
(see below) in the domain defined in (2).

For some of the proofs, see [8], it will also be necessary to assume that contin-
uous derivatives up to order two of all given functions uq exist with respect of all
independent variables.

The multi-dimensional advection equation (1) must always be considered together
with some initial and boundary conditions.

The following notation in connection with some given positive increments hq is
useful in the proofs (see also [6]):

x = (x1, x2, . . . , xQ), (3)

x(+q) = (x1, x2, . . . , xq−1, xq + hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q, (4)

x(−q) = (x1, x2, . . . , xq−1, xq − hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q, (5)

x(+0.5q) = (x1, x2, . . . , xq−1, xq + 0.5hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q, (6)

x(−0.5q) = (x1, x2, . . . , xq−1, xq − 0.5hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q. (7)

2. Expanding the unknown function in Taylor series

The following result is very important in the efforts (see Section 6 and the con-
clusions in Section 7) to establish the order of accuracy which can be achieved when
the Crank–Nicolson scheme is combined with the Richardson extrapolation.

Theorem 2.1 Consider the multi-dimensional advection equation (1). Assume that
(t, x) ∈ D is an arbitrary but fixed point and introduce the increments k > 0 and
hq > 0 such that t + k ∈ [a, b], xq − hq ∈ [aq, bq] and xq + hq ∈ [aq, bq] for all
q = 1, 2, . . . , Q. Assume furthermore that the unknown function c = c(t, x) is con-
tinuously differentiable up to some order 2p with regard to all independent variables.
Then there exists an expansion in Taylor series of the unknown function c = c(t, x)
around the point (t+0.5k, x) which contains terms involving only even degrees of the
increments k and hq, q = 1, 2, . . . , Q.
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Proof. The main ideas of the proof are quite straightforward (the unknown func-
tion c must be expanded in Taylor series and the series should be truncated after the
first 2p terms), but it is rather long and complicated.
The full proof of Theorem 2.1 can be found in [8]. More precisely, the following
equality is proved there:

c(t+ k, x)− c(t, x)

k
= −

Q∑
q=1

uq(t+ 0.5k, x)
c(t+ k, x(+q))− c(t+ k, x(−q))

4hq
(8)

−
Q∑

q=1

uq(t+ 0.5k, x)
c(t, x(+q))− c(t, x(−q))

4hq

+

p∑
s=1

k2sK(2s) +O(k2p+1),

where K
(2s)
t and K

(2s)
q are some constants and

K(2s) = K
(2s)
t +

Q∑
q=1

h2sq
k2s

K(2s)
q . (9)

It should be noted here that it is assumed that all ratios hq/k, q = 1, 2, . . . , Q, remain
constants when k → 0 (which can easily be achieved; for example by reducing all
spatial increments hq by a factor of two when the time-increment k is reduced by
a factor of two).

3. Designing a second-order numerical method

Consider the grids:

Gt = {tn, n = 0, 1, . . . , Nt | t0 = a, tn = tn−1 + k, n = 1, 2, . . . , Nt, k =
b− a
Nt

, tNt = b}
(10)

and (for q = 1, 2, . . . , Q and hq = (bq − aq)/Nq)

G(q)
x = {xiqq , iq = 0, 1, . . . , Nq | x0q = aq, x

iq
q = xiq−1

q + hq, i = 1, 2, . . . , Nq, x
Nq
q = bq}.

(11)
Introduce the following notations:

x̃ = (xi11 , x
i2
2 , . . . , x

iQ
Q ), (12)

x̃(+q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q + hq, x

iq+1

q+1 , . . . , x
iQ
Q ), (13)

x̃(−q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q − hq, x

iq+1

q+1 , . . . , x
iQ
Q ), (14)

where x
iq
q ∈ G(q)

x for q = 1, 2, . . . , Q.
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In this notation the following numerical method can be defined:

c̃(tn+1, x̃)− c̃(tn, x̃)

k
(15)

= −
Q∑

q=1

uq(tn + 0.5k, x̃)
c̃(tn+1, x̃

(+q))− c̃(tn+1, x̃
(−q)) + c̃(tn, x̃

(+q))− c̃(tn, x̃(−q))

4hq
.

The computational device introduced by the finite difference equation (15) is often
called the Crank–Nicolson scheme (see, for example, [5]). It is clear that (15) can be
obtained from (8) by neglecting the terms in the last line and by assuming addition-
ally that an arbitrary inner point of the grids defined by (10) and (11) is considered.

The quantities c̃(tn, x̃) can be considered as approximations of the exact values
of the unknown function c(tn, x̃) at the grid-points from the grids defined by (10)
and (11). It can easily be shown that the method introduced in (15) is of order two
in respect to all independent variables.

Assume that the values of c̃(tn, x̃) have been calculated for all grid-points of (11).
Then the values c̃(tn+1, x̃) of the unknown function at the next time-point tn+1 =
tn + k can be obtained by solving a huge system of linear algebraic equations of
dimension Ñ where Ñ is defined by

Ñ =

Q∏
q=1

(Nq − 1). (16)

4. Application of Richardson extrapolation

Consider (15) with c̃ replaced by z when t = tn+1:

z(tn+1, x̃)− c̃(tn, x̃)

k
(17)

=−
Q∑

q=1

uq(tn + 0.5k, x̃)
z(tn+1, x̃

(+q))− z(tn+1, x̃
(−q)) + c̃(tn, x̃

(+q))− c̃(tn, x̃(−q))

4hq
.

Suppose that 0.5k and 0.5hq are considered instead of k and hq (q = 1, 2, . . . , Q), re-
spectively. Consider, as in formulae (5) and (6) but in the grid-points of the grids (10)

and (11), the two vectors x̃(+0.5q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q +0.5hq, x

iq+1

q+1 , . . . , x
iNq
q ) and

x̃(−0.5q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q − 0.5hq, x

iq+1

q+1 , . . . , x
iNq
q ) for q = 1, 2, . . . , Q.
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Perform now additionally two small steps:

w(tn + 0.5k, x̃)− c̃(tn, x̃)

0.5k
(18)

=−
Q∑

q=1

uq(tn + 0.25k, x̃)
w(tn + 0.5k, x̃(+0.5q))− w(tn + 0.5k, x̃(−0.5q))

4(0.5hq)

−
Q∑

q=1

uq(tn + 0.25k, x̃)
c̃(tn, x̃

(+0.5q))− c̃(tn, x̃(−0.5q))

4(0.5hq)

w(tn + k, x̃)− w(tn + 0.5k, x̃)

0.5k
(19)

=−
Q∑

q=1

uq(tn + 0.75k, x̃)
w(tn + k, x̃(+0.5q))− w(tn + k, x̃(−0.5q))

4(0.5hq)

−
Q∑

q=1

uq(tn + 0.75k, x̃)
w(tn + 0.5k, x̃(+0.5q))− w(tn + 0.5k, x̃(−0.5q))

4(0.5hq)
.

The Richardson extrapolation can now be calculated by using the following formula
(exploiting here the fact that the order of the underlying numerical method is of
order of accuracy two in regard to all independent variables):

c̃(tn+1, x̃) =
4w(tn+1, x̃)− z(tn+1, x̃)

3
. (20)

If the order of accuracy of the underlying method is not 2 but p, then the numbers 4
and 3 in (20) should be replaced by 2p and 2p − 1, respectively.

5. Several general remarks on the Richardson extrapolation

Assume now that an arbitrary method of order p is used. Then, as mentioned
above, (20) can be written as

c̃(tn+1, x̃) =
2pw(tn+1, x̃)− z(tn+1, x̃)

2p − 1
. (21)

The exact solution c(tn+1, x̃) can be expressed in the following two ways, where K is
some constant and k is the time-increment:

c(tn+1, x̃) = z(tn+1, x̃) + kpK +O(kp+1), (22)

c(tn+1, x̃) = w(tn+1, x̃) + (0.5k)pK +O(kp+1). (23)

Eliminating the terms containing K in (22) and (23) gives:

c(tn+1, x̃) =
2pw(tn+1, x̃)− z(tn+1, x̃)

2p − 1
+O(kp+1). (24)
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Denote:

c̃(tn+1, x̃) =
2pw(tn+1, x̃)− z(tn+1, x̃)

2p − 1
. (25)

It is clear that the approximation c̃(tn+1, x̃), being of order p+1, will be more accurate
than both z(tn+1, x̃) and w(tn+1, x̃) when the stepsize k is sufficiently small. Thus,
the Richardson extrapolation can be used in the efforts to improve the accuracy.

The Richardson extrapolation can also be used in an attempt to evaluate the lead-
ing term of the local error of the approximation w(tn+1, x̃). Subtract (22) from (23),
neglect the rest terms O(kp+1) and solve for K. The result is:

K =
2p[w(tn+1, x̃)− z(tn+1, x̃)]

kp(2p − 1)
. (26)

Substitute K from (26) in (23):

c(tn+1, x̃)− w(tn+1, x̃) =
w(tn+1, x̃)− z(tn+1, x̃)

2p − 1
+O(kp+1), (27)

which means that the quantity:

En =
w(tn+1, x̃)− z(tn+1, x̃)

2p − 1
(28)

can be used as an evaluation of the local error of the approximation w(tn+1, x̃)
when the time-increment k is sufficiently small. If the evaluation of the local error
computed by using (28) is not acceptable, then En can also be used to determine
a new stepsize k which will hopefully give an acceptable error. Assume that the
requirement for the accuracy imposed by the user is TOL. Then the new, hopefully
better, time-increment knew can be calculated by

knew = γ
TOL

En

k, (29)

where γ < 1 is used as a precaution factor, see for example [4]. Thus, the Richardson
extrapolation can be applied in codes with automatic stepsize control.

The use of the Richardson extrapolation for stepsize control is relatively easy
when systems of ordinary differential equations are solved numerically. The proce-
dure becomes difficult when systems of partial differential equations are to be han-
dled, because of the introduction of the assumption made in (9). This assumption
implies that if k is multiplied by the factor γTOL/En, then all hq must be multiplied
by the same factor in order to keep the ratios hq/k constant. This difficulty can be

avoided in the special case where all K
(2s)
q are much smaller than K

(2s)
t . Then the

Richardson extrapolation can be slightly modified so that all hq are kept constant
and only the time-stepsize k is to be controlled (thus, the situation becomes in prin-
ciple the same as that appearing when systems of ordinary differential equations are
treated).
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It must be emphasized here that the Richardson extrapolation does not depend
too much on the particular method used. It can be utilized both when classical
numerical algorithms are applied in the solution of differential equations and when
more advanced numerical methods which are combination of splitting procedures
and classical numerical algorithms are devised and used. Two issues are important:
(a) the large time-increment and the two small time-increments must be handled
by the same numerical method and (b) the order p of the selected method should
be known. If the Richardson extrapolation is used in connection with the multi-
dimensional equation (1), then it is appropriate, see (9), to assume that for all
values of q the ratios hq/k are constants.

Much more useful details about different application issues related to the intro-
duction of the Richardson extrapolation and its stability properties can be found
in [2, 3, 9, 7, 10].

The above analysis shows that the accuracy order is as a rule increased by one. In
the next section it will be shown that the application of the Richardson extrapolation
in connection with the numerical method derived in Section 3 gives better accuracy
when applied in the solution of (1).

6. Accuracy of Richardson extrapolation

Theorem 6.1 Consider the multi-dimensional advection equation (1). Assume that
the coefficients uq before the spatial derivatives in (1) are continuously differentiable
with respect to all independent variables and continuous derivatives of the unknown
function c up to order four exist, again with respect to all variables. Then the com-
bination of the numerical method (15) and the Richardson extrapolation is of order
of accuracy four.

Proof. The ideas, on which the proof is to be based, are quite clear. One must apply
the result proved in Theorem 2.1 for p = 2 under an assumption that the numerical
method defined by (15) is used at the grid-points of (10) and (11). However, the
actual poof is very long and rather complicated. It can be found in [8]. It should
be noted (see also Section 5) that in general the use of the Richardson extrapolation
is leading to an increase of the accuracy order of the underlying numerical method
by one. For the second-order numerical method (15) the accuracy order is increased
by two (from order two to order four) when it is applied to the multi-dimensional
advection equation (1) together with the Richardson extrapolation.

7. Conclusions

The result proved in this paper is a generalization of the result proved in [6],
where the much simpler one-dimensional advection is handled.
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It will be interesting to investigate whether the result proved in Theorem 6.1
for equation (1) can be extended for the more general multi-dimensional advection
equation:

∂c

∂t
= −

Q∑
q=1

∂(uqc)

∂xq
, xq ∈ [aq, bq] for q = 1, 2, . . . , Q with Q ≥ 1, t ∈ [a, b]. (30)

Richardson extrapolation can be repeatedly applied (see, for example, [1]). Theo-
rem 6.1 indicates that when this is done, the order of accuracy will be increased by
two after each successive application of the Richardson extrapolation. This remark
explains why Theorem 2.1 is proved for an arbitrary value of p and not only for p = 2
as required in Theorem 6.1.
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Solving advection equations by applying the Crank–Nicolson scheme combined
with the Richardson Extrapolation. International Journal of Differential Equa-
tions, doi:10.1155/2011/520840, 2011 (open access article).
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Faragó, I. . . . . . . . . . . . . .42, 248

Farina, L. . . . . . . . . . . . . . . . . . 52
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Kučera, R. . . . . . . . . . . . . . . . 104
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